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We sketch the principles of a method and notation for use by software designers to describe the
functional characteristics of systems being planned or developed. The method is implicit since
entities are described by their properties only; it is object-oriented since the descriptions
emphasize classes of system objects over functions; it is modular since it provides ways to
describe complex systems in a piecewise fashion; it is iterative since it encourages the stepwise
refinement of system descriptions; it is formal while retaining some of the advantages of non-
formal specification methods.
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It is well-known in the software engineering community that the initial phases of the
software lifecycle - specification and global design - "are the crucial ones. They condition the
smooth proceeding of the remaining phases and the quality of the eventual product.

In other engineering disciplines, a number of methods, notations and tools are available to
support the corresponding phases. Design decisions can be expressed, discussed, evaluated and
recorded using various mathematical techniques. No such widely accepted set of techniques
exists in software engineering; this paper is an attempt to fill this gap.

The proposed approach comprises three components: a method, a notation and a set of
tools. The method is called M. The associated notation is called LM. We shall outline the"
required computerized tools (TM), which have not been implemented.

We will first list the objectives and criteria that led to the design of M.

1.1 - Implicitness

In our view, the sin.gle most important feature of specifications is that they describe
objects implicitly, not explicitly; in other words, a specification should state properties of
objects, but not give a way to construct these objects, even an abstract construction, using
mathematical concepts. This may also be expressed by saying that the role of a specification is
to say what objects have, not what they are.

AB an example of this distinction, consider first the following Pascal record type definition,
a programming variant of the cartesian product of sets as known in mathematics:

type POINT =

x, y, z : real;
speed: VECTOR

Then consider the following characterization of POINT by four functions:

x, 1/, z : POINT ~ REAL
speed: POINT ~ VECTOR

These two ways of defining POINT may at first sight seem equivalent. The first, however,
is explicit, whereas the second is implicit. This is because the first completely freezes the type
POINT, defined as being "equal" to something; only with the second is it possible to add later a
new property of POINTs, say a mass, without changing the initial definition:

mass: POINT ~ REAL

Although the difference between adding a new definition and changing an existing one may
at first sight seem minor, the picture changes when viewed from a software engineering
perspective. An essential issue in the management of software projects is how to avoid the
constant un-shelving and redesign of previously baselined elements. It is thus much preferable to



be able to work by addition rather than modification, leaving existing elements untouched
whenever possible.

Such an incremental approach is particularly appropriate at the specification stage, when
one is exploring issues and trying out different approaches. To make this possible, however,
specifications must be written with the expectation that new elements will be added later. One
should thus avoid premature freezing, and leave the descriptions as open as possible. It is
essential to have a specification method that supports this process.

In fact, the conclusion or the specification step can be taken to be that time when one decides to rreeze

all the objects involved by equating them with the cartesian product or their attributes as defined so rar.

Then implicit definitions can be transrormed (manually or automatically) into explicit ones similar in

spirit to the above Pascal type definition. This will elaborated rurther in section 7 when we discuss how

to use an M description as a basis ror system implementation.

1.2 - Object-orientedneu

Software systems may be described as devices that perform certain operations on certain
objects. The description of a system may be structured around the objects or around the
operations.

Using the objects (or rather the object types) as the basis for the description is preferable
from a software engineering point of view. The reason is that, if one consider the whole lifecycle
of a system, repeated changes will occur, so that many a system bears little resemblance at any
given time to what it was a few months or years before. Practical experience shows, however,
that in this constant evolution (which is the rule, rather than the exception, for most real
systems), the basic objects manipulated by the system tend to remain more stable than the
operations performed on them. 1

It is thus essential to recognize and specify early the essential categories of objects that
occur in the system. In M, this is done by listing the sorta of the system at an early stage of the
specification. The rest of the specification is concerned with expressing properties of these sorts
by defining the applicable operations.

A sort may be understood as just a set in the ordinary mathematical sense.

1.3 - Syntax and Semantics

The description of the relational structure of a system, i.e. what objects are connected to
what other objects and what operations apply to what objects, may be called the ayntax of the
system. Its semantics, on the other hand, is the description of the properties of the objects and
the operations.

Describing semantics is a much more difficult task than describing syntax if one is to
remain at the specification level. Many of the specification systems that have been successful in
industry are mostly good at describing the syntax, and their attempts at including the semantics
either use natural language or resort to an operational approach (that is to say, describe
algorithms rather than abstract properties), thus departing from the true realm of specification.
Formal specification techniques, on the other hand, make it possible to describe system
semantics while remaining at the specification level, but they require much effort.

The method used in M is to divide the description of a system into several parts
("paragraphs" in the associated notation). The first stages are concerned with syntax, the later
ones add semantics. The specification task is progressive; by writing the first, syntactical
paragraphs, one may already gain some benefit from the method and associated tools. To
obtain am<>recomplete description,sernantic properties will be grafted onto the basic stem.



1.4 - Modular features

One of the main reasons why formal specifications have not been more widely -used is (in
our opinion) the lack of tools and techniques to make the specification task more manageable.
M includes simple features for two key aspects of modularity [12]: decomposability and
composability.

Decomposability is concerned with techniques for dividing a large system into several
simpler ones (the "top-down" component), and for postponing the description of some features in
order to concentrate initially on the essential aspects. A realistic specification method should
provide support for such a stepwise approach to specification; it should allow system
descriptions to be iterative. This is essential to help specifiers master the overwhelming amount
of detail that confronts them at the early stages of a project.

Composability is the ability to combine existing pieces of specifications when writing a
new one (the "bottom-up" aspect). This property is particularly important in connection with
one of the essential issues of software engineering, reusability, which is just as relevant for
specification as for other phases of the li(ecycle.

Features of the M method and the associated notation have thus been devised to allow for
modular descriptions of systems. A system description may include an interface paragraph that
describes the connection of the current specification with others, existing or yet to be written.

The basic modeling tools used in the description of systems are the simple mathematical
notions of sets and functions. Functions may be either total or partial; partial functions play
an important role in connection with error situations.

1.6 - Errors and exceptional cases

The issue of how to deal with erroneous and exceptional cases plagues software design.
Much of the complexity in requirements, specifications and design documents results from the
need to account for various kinds of abnormal conditions (illegal inputs, etc.).

M offers no magic cure to this problem but emphasizes the need to keep the descriptions of
normal and erroneous cases distinct. The aim is not to shun away from the inescapable
necessity of dealing with the latter, but to keep the former simple and manageable.

To deal with exceptional cases, M relies on the mathematical concept of partial function.
An extension paragraph provides a way to enlarge the domains of partial functions once a first
version of the specification has been written.

A comprehensive specification method stich as M may only achieve its full potential if it is
_ supported by good good computerized tools. The tools envisioned here are essentially
management and configu.ration tools, used to keep track of the various specifications already
written or under development. Examples are specification databases to retrieve previous
specifications (e.g. by keywords); linkers to combine elements of system descriptions; structural
editors to help in writing specifications; analyzers to check for consistency and other properties,
both intra- and inter-systems; provers.



Many of the features of the M method may be found in previous work. We list the
conscious influences below, and confess without any shame to having stolen many ideas from
other efforts. We do hope, however, that the whole is a little more than the sum of its parts.l

• The most direct influence was that of the Z specification language in its various
incarnations ([1] being the last known one), with its emphasis on using simple mathematical
concepts to model programming concepts and, in the later versions, facilities for modular system
descriptions (chapters, classes). In a sense, M is nothing more than a restricted version of Z.
Another work based on the same premisses is that of Sufrin [18,19,14].

• Another important source of fundamental insights was the work on VDM, particularly
the presentation of the "rigorous approach" in [9], although some of the features of M (for
example the emphasis on implicitness) depart significantly from VDM.

• The work on abstract data types was clearly a milestone in specification. To a certain
extent, M is an attempt to make abstract data type techniques available to practitioners.

• M has many points in common with formal specification methods such as Special [16],
FDM [10], Affirm[15]. The main difference is~.that the emphasis in M has been more on
expressive features (facilitating descriptions) than on proofs. Also, we have aimed at a
compromise between formality and usability, by permitting the users of the method to gain
some benefits from a specification even if it has not been completed down to the last quantifier.
Finally, M differs from Special and FDM in that no predefined notion of state is used; the
mathematical basis is elementary set theory. A set representing possible states may be
introduced explicitly if needed (as in the example below), but it is then treated just as any other
set.

• Among formal methods, Clear [4,6] stands apart with Z because of its emphasis on
modular, composable specifications. Also along with Z, Clear is also particularly interesting in
that it has been formally defined (in at least two different ways [5,17]), a task that has yet to be
undertaken for M.

• We have also drawn some lessons from less formal but industrially successful methods. In
particular, systems such as ISDOS [20J and SREM [2J emphasize the use of specifications in
project management, as repositories of essential information, and the role of tools.

• Many ideas come from programming languages. The syntax of the notation associated
with M, called LM, follows the Algol-Pascal-Ada line. More importantly, modular features have
been strongly influenced by programming languages: the description of objects was influenced by
Simula and Smalltalk, the import-export clauses are not far in spirit from what may be found in
Alphard, CLU, Modula or Ada. The idea of describing a system by successive "paragraphs" that
yield successive. approximations was conceived as a generalization of the Ada device of writing a
package in two parts: a "specification" and a body.

_ ...

1 Aftl'r presenting talks on this method. we heard comments such as "this is just VDM", "this is just AI-
phard", l'tc. Since more than one other method was involved, however, the validity of these comments is trivial-
ly disproved by reductio ad ab.urdum, followingfrom the symmetry and transitivity of the "y ilJJJt" relation.



A description of a system in M is expressed in the notation, LM, as a set of paragraphs.
There is a recommended order for writing these paragraphs, given by figure 1.

An important part or a system specification is the interrace paragraph, which gives the connection with

other systems, thus permitting the modular approach to system description advertised above. This

paragraph, which does not appear in figure 1, wiII be discussed in section 5.

Invariants
.It

Transforms

~

The sorts, attributes and transforms paragraphs describe essentially what we have called
the syntax of a system; the other paragraphs give the semantics. It is important to note that M
has been designed so that system descriptions may be incomplete; in particular, the TM tools
should be able to cope with specifications where some paragraphs are missing.

The sorts paragraphs lists the basic classes of objects that are used in the system. For
each sort, a list of some specific elements may be given.

The operations of the systems are classified as "attributes" or "transforms". In both cases,
the underlying mathematical notion is that of (possibly partial) function. A simple attribute on
a sort X is a function

where Y is another sort. A function of this sort represents the possibility of accessing the value
of a particular attribute defined on objects of sort X (like the z coordinate of "points" in
section 1.1).

An attribute on sort X may also be non-simple, that is to say, involve parameters of sorts
other than X. A non-simple attribute thus corresponds to a function of the form



for some sorts Uh U2, ••• , Um• ,

Transforms, on the other hand, represent operations that may change objects of a given
sort. Mathematically, a simple transform on sort X is a function of the form

but usually transforms will involve parameters other than the objects to be changed, i.e. they
will correspond to mathematical functions of the form

I: X X VI X V2 • •• X V" -+ X

The invariants and effects paragraphs give the basic semantic properties associated with
attributes and transforms, respectively:

• Invariants describe properties that the attributes of all objects must always satisfy,
regardless of what operations (transforms) are applied to the objects.
• Effects describe the semantics of transforms by expressing for each sort X, each
transform t on X and each attribute 4 on X, how (if at all) the value of 4 may change for
an object of sort X when t is applied to it. .
Both attributes and transforms may be partial functions, i.e. undefined for some values,

corresponding to abnormal cases. The invariants and effects apply to the case when these
functions are defined, that is to say, to the specification of the normal case.

:rhe constraints paragraph gives the exact conditions under which each partial function is
defined.

For some of these partial functions, the extension paragraph defines an alternate function,
to be invoked instead of the corresponding primary function when an argument falls outside of
the normal domain.

The design paragraph expresses the basic decisions made by the designer regarding the
architecture of the implementation, by distributing the various elements of the system among
modules.

The implementation paragraph achieves the transition from design to actual
implementation.



To show how the principles outlined in the previous section are applied in practice, we
have chosen to illustrate the method and the notation through a particular example. Although
small, this example cannot be characterized as a toy problem. It will allow us to present the
essential aspects of M, with one very important exception, modular features, whose presentation
·is deferred to the next section.

4.1 - A Distributed File System

We consider the following problem. A computer network (figure 2) includes machines of
diverse kinds, e.g. IBM computers· running MVS, others running VM, Vaxes running Unix or
VMS, etc. Users of these machines need to share files. This is the case, for example, when
separate teams are cooperating on a particular project.

Thus a program running on a machine may need a file that resides on another. Since,
however, this is a long-distance network, not a local-area one, it is impractical to let a program
directly access a remote file; so what is needed is a set of tools for copying files back and forth
over the net.

This immediately raises several problems. One is that various computer systems support
various file types: for example, IBM MVS has a notion of "partitioned file" (a group of related
sequential files, often a subroutine library), not supported by other systems; Unix and Multics
have "directories", unknown on MVS or VM. This clearly puts restrictions on possible file
transfers.

A more difficult problem is that of integrity: if we allow taking multiple copies of a file
and then copying back updated versions, then the question arises of maintaining some control
over possibly conflicting updates. Now the integrity of a file or set of files (database) cannot be
defined in abstraeta2:. it depends on what you want to do with these files.

Thus we decide on the following policy: the tools we will design do not purport to solve
the integrity· problem, but they will make it possible for the designers of any particular
application to implement any reasonable policy they define for application-dependent integritycontrol. -.--.--.-.---- .



In accordance with this idea, we decide on the following basic operations:
• Copy: this operation will copy a file from a given source computer to a given target
computer.
• Take: this operation is as Copy, but preemptive: once a Take operation has been
successfully performed on a file f, no other program may perform a Take on that file until
the file has been released by its temporary owner through one of the following two
operations.
• Return: this operation copies back a previously "taken" file to its original source, taking
into account any changes that may have been performed on the copy. The file becomes
available again for further Take operations.
• Free: this operation makes a previously "taken" file available again for further Take
operations. Changes performed on the copy are not reflected on the source.
• Taken: this operation is a query on the state of a file, which finds out whether or not the
file is available for preemptive copy (in a practical package, Take and Taken may have to
be presented as a single primitive to ensure mutual exclusion).
One more design decision is needed here: how should a program reference the files it needs

to access through the above primitives? In principle, a file residing on host emptr, where its
name (relative to the local file system of machine cmptr) is loeaLname, may unambiguously be
identified, fro'm any node of the network, by the pair <cmptr, locaLname>.

This solution is not satisfactory, however, since it requires programmers to know precisely
where each file resides on the network. Also, file naming conventions differ significantly on
computer systems, and it is unpleasant to require, say, MVS programmers to know about Unix
conventions or conversely. Finally, it seems wise to restrict applicability of the network file
transfer operations (Copy· and Take) to designated files, rather than allowing any program
running on any machine to access any file on any other machine. '

We thus introduce the notion of a global name. A file will only be available as source for
the network transfer operations if it has been declared "global". When making a file global, one
must give it a global name, which will be used to refer to the file if it is to be the source of a
transfer operation. A new operation is thus needed:

• Make_global: this operation associates a global name to a file residing on a certain
machine and makes this file available, through its global name, as source for the transfer
operations (Copy and Take).

Clearly, global names must characterize global files uniquely over the whole network
(whereas local names may be repeated: two different computers of the network may have a file
called Jill) .. The Make_global operation may be implemented by creating an entry in a central
catalog of global files: this catalog maintains the correspondence between global names and
physical <emptr, loeaLname> addresses. But other implementations may be conceived: for
example, one might choose to have a specialized file server as one of the machines on the net,
containing copies of all the global files. One of the roles of a useful specification is to express
those properties of the system that are independent of the particular implementation chosen.

This concludes the first draft of our system specification. Of course, many details remain
to be spelled out. Whereas natural language is quite adequate for discussing broad avenues of
initial design, it does not suffice for the following steps, when things must be made precise,
unambiguous and complete. Here formal specifications step in.



4.2 - Sorts

We begin our specification by its first paragraph, the list of sorts, given below. This is the
sorts paragraph for our exampie system, which we call DFS, for "Distributed File System".

system DFS sorta

COMPUTER;

FILE;
COMPUTER_TYPE haa ibfTLmvs, ibm_vm, vax_unix, apple_2_ms_dos, vax_vms, multics ;

FILE_TYPE haa sequential, direcCaccess, partitioned, directory;

FILE_MODE haa global, nonglobal;

LOCAL_NAME;

GLOBAL_NAME;

FILE_CONTENT;

KEYWORD;

USER,;

STATE;

The sorts are the sets of values that may be taken by the various entities of the system
being described. As a notational convention, we write sorts in uppercase and everything else in
lower-case. Because of the emphasis on implicitness, we don't say much about each sort in the
sorts paragraph: we give its name, and sometimes the name of some of its elements, that's all.
There is no way at this stage to express that, say, a POINT has four components (as introduced
in section 1.1), or (here) that a FILE is identified by a file descriptor with some concrete or even
abstract structure. -

COMPUTER and FILE are obviously needed as sorts. For the next two sorts,
COMPUTER_TYPE and FILE_TYPE, we list some distinguished elements through the haa
clause. Note that there is no claim that these are the only elements (as with a Pascal type
definition by enumeration): the sort is still open. The haa clause implies, however, that the
elements listed are presumed to be different.

A FILE_MODE makes it possible to determine whether a file has been made global.
We call LOCAL_NAME the sort containing all the names that may be used to identify

files on the various computer systems involved. No specific property of this sort will be necessary
at this level of the specification. GLOBAL_NAME, too, will not be described any further; this
sort is used to describe possible global names for files that have been made global.

It is all nice to have names and modes associated with files, but of course if we want to
describe the result of copy operations we must have the notion of FILE_CONTENT. Again, we
need not specify this sort any further; it is enough that we can refer to it.

To "take" a file (preemptive copy), one will need a keyword, used again to release it later.
Hence the sort KEYWORD.

The sort USER is also needed for the Take operation: we shall need to record who has
"taken" a given file. By "user", ,weactually_mean a program rather than a person.

Finally, we need a sort STATE to describe the state of the complete distributed file
system at any given time. The need for such a sort is a common, although not' unive'rsal,
occurrence in M specifications.



Here then is the first paragraph of our specification. The result achieved so far is modest
but non zero: we have listed the categories of objects that playa role in our system. If we are
lazy, or broke, or both, we might stop here and still benefit from having taken the trouble to
write anything at all. This remark applies to each of the steps bclow, although we won't repeat
it: an M specification may be partial, and the associated TM tools should be prepared to deal
with it even if some paragraphs are missing. Of course, the full benefit of the method will only
be obtained if the specification is complete, but one may already get partial results before.

We happen to be very courageous and enthusiastically undertake the rest of the
specification. The next step is the attributes paragraph, given below (portions of lines beginning
with two consecutive hyphens are LM comments).

A decision which significantly affects the appearance of M specifications was to
systematically attach every attribute (and transform, see below) to one and only one sort. This
raises no difficulty for what we have called "simple" attributes above, i.e. functions of the form

f:X -+ Y

Such a function will be included as part of the attributes "on X':

on X attributes

In our example, the attributes on sorts FILE, COMPUTER and USER fall into this category.
In the general case, however, we have already mentioned that an attribute is mathematically a
function of the form

We will also describe such a function as being an attribute "on X'. To take the extra
parameters into account, the definition of the attribute will be written as:

on X attributes

Here, examples of such attributes are the attributes on sorts COMPUTER_TYPE (attribute
supporting) and STATE.

Mathematically. the device that we apply to attribute5 is called "currying"; it consists in replacing (for
n ~ 0) a function of n+l arguments. I in our example. by a function I' of one argument (with values in
X). yielding results that are functions of n arguments (in U\. U2' •..• Urn):

There is a conscious dissymmetry in the convention chosen here, since we might just as
well choose one of the Uj as the distinguished sort to which f is attached. The reason for this
dissymmetry is the concern for modular, manageable descriptions. If we treat X and all U, on
equal footing, then we risk ending up with large, messy attributes paragraphs. Attaching each
attribute to a distinguished sort makes it possible to divide the paragraph into a. number of



on FILE attributes
locname : LOCAL_NAME total;

host: COMPUTER total;

ftype : FILE_TYPE total ;

end FILE attributes ;

- - The local name of a file

- - The machine where a file resides
- - Sequential file, directory etc.

on COMPUTER attributes
make: COMPUTER_TYPE total;

end COMPUTER attributes;

on USER attributes
where_running: COMPUTER total;

end USER attributes;

on COMPUTER_TYPE attributes
supporting (FILE_TYPE) : BOOL total;

on STATE attributes
fcontent (FILE) : FILE_CONTENT total; - - Current contents of a file

file_exists (LOCAL_NAME, COMPUTER) : BOOL total;
- - Is there a file of that name on that computer?

file_of_name (LOCAL_NAME, COMPUTER) : FILE partial;
- - If so, what is it?

used...globname (GLOBAL_NAME) : BOOL total;
- - Has this global name been assigned to a file?

globfile (GLOBAL_NAME) : FILE partial; - - If so, what file?

mode (FILE) : FILE_MODE total; - - Has this file been made global'?

globname (FILE) : GLOBAL_NAME partial;
- - If so, under what name?

taken (GLOBAL_NAME) : BOOL partial; - -Has the file with this global name been reserved?

owner (GLOBAL_NAME) : USER partial; - - If so, by whom?

key (GLOBAL_NAME) : KEYWORD partial;
- - and under what keyword?

end system attributes ;

small sections, each corresponding to a sort.

This device is very CI05e to a successrul modularization technique ror programming languages: the object-

oriented approach to program design embodied by the Simula 67 and Smalltalk languages. The designers

or Simula (rollowed by thoee or Smalltalk) introduced a conscious conrusion between the notions or

module and type: a module ill the implementation or a data abstraction. This is in contrast with the

somewhat looser notion or module round in Ada or Modula. where a module may be almost any Krouping



oC elements (types, variable5, procedure5), The Simula-Smalltalk approach has some drawbacks, but it
implements a very strong consistent view oC modularity that in practice yields excellent system designs.
The5e questioll8 are Curther discussed in [12J.

The notation used in LM to denote attributes of objects reflects the chosen dissymmetry:
the argument corresponding to the distinguished sort will be written using dot notation (as for
components of Pascal record types, properties of Simula reference variables etc.); the other
arguments, if any, will be written in parentheses. Thus if f is an object of sort FILE, then its
local name (an attribute defined in the "on FILE' section) will be written

s. locname

The host on which it resides will be written s • host, etc. Referring now to the "on STATE'
section, the value of the attribute file_exists for a state s, a local name 1 and a computer c will
be written

s • file_exists (l, c)

The last general remark necessary to fully understand the attributes paragraph is that
attributes may be partial functions: some attributes may not be defined in all cases. Being
partial is an important property, so every attribute definition must be followed by one of the
two keywords total or partial. For any partial attribute, there will be an entry in the
constraints paragraph (see section 4.7) describing the exact conditions under which the attribute
is defined.

A few comments on the attributes of the example may be useful.

Note the difference between the attributes on FILE (properties of files which do not
depend on the system state, like the host on which a particular file resides, its local name, its
type, which are considered to be innate properties of the file) and the properties of files that are
defined under STATE because they are state-dependent, like the content of a file.

On sort USER, attribute where_running gives the host on which a user (i.e. program) is
being executed.

If ct is a computer type and ft is a file type, then

ct • supporting (It)

is a boolean value (we assume the sort BOOL to be one of a small number of predefined sorts),
true if and only if computer type ct supports file type ft. Thus we will expect ibm_mvs •
supporting (directory) to be false, vax_unix • supporting (sequential) to be true, etc. (these
properties will be expressed in the invariants paragraph).

On sort STATE, attribute fcontent gives the current contents of any file. Files will
usually be accessed through their names, so we need to describe the correspondence between a
file name and a file; this is achieved through attribute file_exists, which corresponds to the
query "is there a file with a given name on a given computer?". In a state s, given a local file
name 1 and a computer c, the file of name 1 on computer c is

s • file_of _name (l, c)

Note that attribute file_of _name is partial because there might be no file of name 1 on c. The
precise condition under which s • file of _name (l, c) is defined is that s • file_exists (l, c) be
true; this condition will be expressed in the constraints paragraph of the specification.

If g is a global name, then s • used_globaLname yields true if and only if name g has been
assigned to a global file in state s. If this is the case, then this file may be obtained as s •
globfile (g).

The "mode" of a file is global if and only if the file has been made global. If so, the file has
a global name, obtained as s • globname (g) .



Attribute taken applies to a global name and determines whether the file with that global
name has been "taken" by a user in the current state; this attribute is partial because it only
applies to global names which have been assigned to a file. If s • taken (g) is true for a global
name g, then the user that has "taken" the corresponding file is given by s • owner (g) and and
the key that was used to reserve it is s • key (g).

Note that because of the correspondence between global files and global names (attribute
globname and globfile), the arguments of attributes taken, owner and file could have been
chosen as FILEs rather than GLOBAL_NAMEs.

4.4 - Invariants

The invariants express properties of the attributes which must always hold. The
invariants paragraph for our example is given below.

system DFS invariants

declare I : LOCAL_NAME, 9 : GLOBAL_NAME, e : COMPUTER, s : STATE, / : FILE;

i1: /. host. make. supporting (/. /type) j

i2: s • file_oJ_name (I, e). loename = I j
i3: s • globfile (s. globname (/)) = / j

i4: s. globnami (s • globfile (g)) = 9 j
is: s • used..globname (s • globname (/)) ;

i6: s. mode (s. globfile (g)) = global;

il: ibm_mvs. supporting (/t) = (It E {sequential, direcCaecess, partitioned}) ;

h: va%_unix. supporting (/t) = (It E {sequential, direcCaceess, directory}) ;

h: multies. supporting (/t) = (It E {sequential, direcCaccess, directory}) ;

i4: vax_vms. supporting (It) = (/t E {sequential, direeCaeeess, directory}) ;

is: apple_2_m8_dos. supporting (It) = (It E {sequential, direcCaccess}) ;

end system invariants

Each invariant has a label (ill i2, ill i2, etc. in our example), which may be used to refer
to it. Names are used in the invariants to denote objects of various sorts; they are introduced
by a declare clause. By convention, any free variable is considered to be universally quantified,
so that invariant ill for example, should be understood as if it was preceded by \I / E FILE.

The meaning of the invariants should not be hard to understand. Invariant il gives a
consistency condition on file types: the brand of the computer on which file / resides (that is, / •

e host. make) must support the file type of /. Invariant i2 is a consistency property on attributes
file_oJ_name and locname: the name of the file of name I (on a computer c, in a state s) is l.
Invariants i3 a~d i~ express that attributes globfile and globname are inverse of each other.
Invariant i,,>expresses the relationship between used_globaLname and globname , i6 between
mode and globfile.

Invariants i1 to is simply give the properties of attribute supporting by enumeration.

For the more interesting invariants (il to i6), the reader will have noticed that some of the
functions involved are partial, so the meaning of equality must be made more precise. The
appropriate interpretation is "weak equality": a=b means "if both a and b are defined, then
they are equal". (Recall that the precise specification of the domains of partial functions IS

deferred to the constraints paragraph).



Invariants play a very important role in expressing the fundamental properties of a
system, those which must be preserved by any operation applied to its objects. The search for
relevant invariants rewards the system designer with insights into the really important features.
It also yields two important side benefits3:

• Invariants provide guidance for testing: the first thing to check when monitoring the
behavior of the system, or a prototype of the system, on a set of test inputs, is whether
any invariant is violated. This form of testing is effective because it goes right to the
essential properties of the system, as opposed to "blind" testing .
• Invariants are useful for evolutive maintenance: to check whether a change to the
software preserves the "essential semantics" of the system, one should go back to the
original invariants and see if they still hold.

So far we have described only the static properties of our system. We come now to its
dynamics, represented by transforms.

The transforms paragraph has several features in common with the attributes paragraph.
In the same fashion as attributes, transforms will be curried, i.e. a transform function of the
form

will appear as a transform "on X':
on X transforms

& attributes, transforms are declared as either partial or total. Application of a
transform is written using the same convention as for attributes: if % is an element of sort X,
the object (of the same sort) resulting from applying transform trans/ to %, with arguments
tlh tl2' •••, tin is denoted

% • trans/ (tlh tl2' •••, tin)

or just % • trans/ in the case of a simple transform with no arguments.
An important feature of transforms is that they are entirely specified by their effects on

attributes. Let trans/ be a transform on sort X. When defining t, the M specifier must examine
all attributes defined on X in the attributes paragraph, and determine for each such attribute
attr whether application of trans/ may change the value of attr. In other words, one must
specify whether.

%. transf(tlhtl2' ..., tin). attr (Uh U2, .•• , urn)

mayor may not be different from

%. attr (Ull U2, ..• , um)

for arbitrary till tl2' •••, tin' Ull U2, •.• , Um• Here we are assuming that attribute attr has m
arguments; the Uj argument list would be omitted for a simple attribute.

Every transform definition will thus be followed by the list of attributes that it may
change in this fashion (preceded by the keyword change) as illustrated by the example below.



on STATE transforms
make_global (FILE, GLOBAL_NAME) partial

change mode, globfile, globname, used_globname ;
- - Make this file global with this global name

copy (GLOBAL_NAME, FILE) partial
change Icontent ;

- - Copy the contents 01 the file with this global name into this other file

take (GLOBAL_NAME, FILE, USER, KEYWORD) partial
change fcontent, taken, owner, key;

- - As "copy", but also pree'mptitJe

return (GLOBAL_NAME, USER, KEYWORD) partial
change Icontent, taken, owner, key;

- - Copy back and release
free (GLOBAL_NAME, USER, KEYWORD) partial

change taken, owner, key;
- - Release without copying back

end STATE transforms ;

end system transforms;

This process of doing for each sort the complete "product" of transforms by attributes is
an important part of Mspecifications. Note that for the reader of a specification the "change
..." list next to each transform definition is useful not only because it highlights attributes
affected by the transform but also, just as importantly, because it makes it possible to infer
what attributes may not possibly be impacted.

The precise description of how every impacted attribute is changed by a given transform is
deferred to the next paragraph of the specification, the effects paragraph.

In our example, the five transforms (all on sort STATE at this stage of the specification)
correspond to the operations introduced in the informal draft. For each of them, the reader
should check the list of possibly changed attributes.

Next we return to the semantics of the system by glvmg the effects of the various
transforms. The structure of the effects paragraph leaves no place for hesitation: there must be
one and exactly one entry for every item of every "change" list in the transform paragraph.

Precisely, if we have a transform entry of the form

on X transforms

trans! (VlJ V2, "'J Vn)
change , attr, ;

end X transforms

where attr is defined in the attributes paragraph as



then the effects paragraph must contain an entry of the form

z. trans! (tilt tl2, ••• , tin). attr (UI> U2, ••• , urn) = E,ran./,attr[tll, tlZ, .•. , tin' UI> UZ, •.. , urn!

where E,rano/.allr [••• J is an expression, usually involving the value of the attribute before the
transform is applied, i.e. z. attr (UI> U2, ••• , urn)' Here we are assuming a proper declare line
fot all the variables involved; recall that free variables are assumed to be universally quantified
(that is, preceded by V).

The left-hand side of such an entry is entirely determined by the previous paragraphs of
the specification; so the TM supporting tools should be able to construct it automatically. Of
course, the right-hand side (expression E) can only be provided by the specifi~r.

The effects paragraph below describes precisely the result of the various operations in our
example problem. To write it, we rely on the following useful notation. Let h be a function:

h:X--+Y

Let a E X and tI E Y.We denote by

9 = replace h at a with tI

the function 9 that is identical to h except that its value for element a is tI. In other words, for
any z EX:

9 {z}= it z = a then tI else h {z}end it

If h is a partial function, the domain of 9 is domain (h) U {a}.
The replace ••• form is not strictly part of the LM notation, but may be considered as a

simple abbreviation (macro) for the it •••then .•.else •.end it expression, which is in LM. The
former makes it possible to describe effects more clearly.

In a similar fashion, we denote by

9 = undefine I at a
a function that is the restriction of ! to domain {I} - {a}.

An important point should be noted regarding the meaning of the given effects in the case
of partial functions. The transforms whose effects are given in the effects paragraph, and the
attributes on which these effects are given, may be partial. The convention is that the effects
described by the right-hand sides of the equalities in this paragraph are applicable only when
the left-hand sides are defined. When a left-hand side is not defined, whether the corresponding
right-hand side is defined or not does not matter; all bets are off.

Note, however, that whenever a left-hand .side is defined, then the corresponding right-
hand side must also be defined since its evaluation is required to obtain the value of the left-
hand side. This consistency problem will be studied in section 6.6.



system DFS effects
declare 1: LOCAL_NAME, 9 : GLOBAL_NAME, c : COMPUTER,

s : STATE, I: FILE, k : KEY, u : USER;
s • make_global (I, g). mode = replace s • mode at I with global;

s • makcglobal (I, g) • globfile = replace s • globfile at 9 with I;

s • makcglobal (J, g) • globname = replace s • globname at I with 9 ;

s • make_global (I, g) • used_globname = replace s • used_globname at 9 with true;

s. copy (g, I) • Icontent = replace s • Icontent at I with s • globfile (g) • Icontent ;

s. take (g, I, u, k). Icontent = replace s • Icontent at Iwith s • globfile (g) ./content ; .

s. take (g, J, u, k) • taken = replace s • taken at 9with true;

8. take (g, I, u, k) • key = replace s • key at 9 with k;
s. take (g, I, u, k) • owner = replace s • owner at 9with u;
8. return (g, I, u, k). Icontent = replace s • Icontent at s • globfile (g) with / ./content ;

s. return (g, J, u, k). taken = replace s • taken at 9 with lalse ;

s. return (g, /, u, k) • owner = undefine s • owner at g;
s. return (g, /, u, k) • key = undefine s • key at 9 "
s .Iree (g, J, u, k). taken = replace s • taken at 9 with lalse ;

s .Iree (g, J, u, k) • owner = undefine 8 • owner at g;
8.lree (g, I, u, k). key = undefine 8 • key at g;

end system effects ;

So far we have been treading on rather unsteady ground since our specification contains
partial functions and we have all but ignored undefined values. This method is useful for
concentrating on the basic cases first, but of course at some point we must say exactly when
operations are applicable and where they are not. This is the object of the constraints
paragraphs.

In this paragraph, we look back at the definitions of attributes and transforms, and we
include an entry for each function that has been introduced as partial (again, the TM tools
should guide us here by automatically providing the list of entries to be filled). Each entry will
thus correspond to a partial function I (attribute or transform), previously defined as being "on
X' for some sort X, possibly with parameters in sorts All A2, •••• , An j the entry will be written
in the form



system DFS constraints
declare I : LOCAL_NAME, 9 : GLOBAL_NAME, c : COMPUTER,

. s : STATE, f: FILE, k : KEY, u: USER;

s in domain file_ol_name for I, c iff s • file_exists (n, c) ;

s in domain globfile for 9 iff s • used_ylobname (g) ;

s in domain globname for I iff s • mode (I) = global;
s in domain taken for 9 iff s • used.-globname (g) ;

s in domain owner for 9 iff s • taken (g) ;

s in domain key forg iff s • taken (g) ;

s in domain make_global for f, 9 iff not s. used.-globname (g)

s in domain copy for g, I iff
s. globfile (g) .Itype = I. Itype and not (s. taken (s • globname (f)))

s in domain take for g, I, u, k iff
s. globfile (g). Itype = I. Itype and not {s. taken(s • globname (f)))

and not s • taken (g) j

s in domain return for g, u, k iff

s. taken (g) and s. owner (g) = u and s. key (g) = k;

s in domain Iree for g, u, k iff - - Same conditions as lor return

s. taken (g) and s. owner (g) = u and s. key (g) = k;

end DFS constraints;

x in domain I for ail a:!l ..•. , an iff P

where P is a condition on %, alt at, .... , an, defining the constraints that must be satisfied by
these arguments to ensure that % • f (ail a2, .... , an) is defined.

One of the benefits of a formal specification is that it forces the software designer to give
precise answers to some questions that are very important for the behavior of the eventual
system. We have an example here with the constraints on such transforms as copy and take.
Although it was stated in the informal draft specification (section 4.1) that take is preemptive
but copy is not, another problem was not addressed: is one permitted to perform a copy whose
source is a file that has been reserved by a take operation? Here we cannot escape this question.
The choice described below is to authorize a copy from a source that has been "taken"; but a
copy or take operation may not use a reserved file as its target. Formal notations naturally
lead to asking (and answering) such important questions.

An important point to note is the convention used when conditions on the domain of a
partial function refer to other partial functions. The convention is that the expression
I (a) = 9 (b), where I and 9 may be partial functions, is a shorthand for

(a E domain (I) and bE domain (g)) and then I (a) = 9 (b)

where and then is the non-commutative and operator (yielding false if its first operand is false,
regardless of whether its second operand is defined or not). Thus the condition for owner below,
for example, should be understood as



T

8in domain owner for 9 iff 8. used_~lobname (g) and then 8. taken (g) ;

This device, which signi{icantly simplifies the expression of constraints, corresponds to a
particular logic for dealing with undefinedness, analyzed more precisely in section 6.5 below.

Partial functions provide a simple mathematical tool for describing computations which
should not be attempted. We find this approach preferable to the alternative way of dealing
with errors by using explicit "undefined" elements with special properties [7]. Our approach
follows from one of the main tenets of M, namely that a specification method should allow the
system designer to concentrate on the essential things first, without being overwhelmed at once
by all the details that the final system wil1have to take into account.

A1J the specification is being refined, however, partial functions cannot usually remain
partial indefinitely: in implemented systems, one likes all functions to be total, if only out of
politeness towards the users of the system.

The extension paragraph (not described any further in this version of .the paper) makes it
possible to improve a specification containing partial functions by associating with every partial
function (attribute or transform) an alternate function, known as its doppelganger, to be used
in lieu of the original function for arguments that fall outside it~ domain.



As pointed out in section 1.4, it is essential for practical specifications to allow the
decomposition of system descriptions into descriptions of subsystems, and of re-using existing
specifications when describing new systems.

The modular features of M are based on an analysis of the relationships that may exist
between systems. The following relations are of primary importance .

• 1- B is a particular case 0/ A. In other words, anything that is true of A is also true of
B (but some properties may be true of B that are not necessarily true of A) .
• 2- B contains an instance 0/ A. For example, A could be the system of "trees", where B
uses one or more trees .

• 3 - B is a particular case 0/ a, with some exceptions. This is like case 1, except that some
of the properties of A may not hold for B. This is very important in practice, since so
many systems are "almost" upward-compatible with existing systems. Thus there must be
a way to import elements from a specification while explicitly rejecting some of their
properties.

M provides SUppOl't for these three kinds of interaction in the interface paragraph. To
support 1, we include in the interface paragraph a section of the form:

from A use

a; p ; ...
end A use

In this notation, a, p, etc. denote "syntactic" elements, that is to say, sorts, attributes
and/or transforms. The semantic properties (invariants, effects, constraints) of these elements
should not be included: they follow automatically.

If, on the other hand, some of these properties are not wanted (that is to say, in case 3
above), then they can be excluded explicitly. The use section will then contain an except
clause, as follows:

from A use

a; p ; ...
except 1, c,...

end A use

where 1, c,... refer to invariants (denoted by their tags, e.g. ia in our example), effects (denoted
as effect trans/on attr), or constraints (denoted as constraint on /).

As a notational convenience, it is permitted to have a use section of the form

from A use
all ;

except 1, c,...
end A use

making all elements of A available to the current system description except those which are
explicitly excluded. In this case, the excluded elements (gamma, 8,... ) may include sorts as well
as semantic properties.



Interfaces of type 2 above are expre~sed within the same notation using a very simple
device: a use section may include "renamed" clauses, as follows:

from A use

In this fashion, several instances of the specification for the same system A may be used in
the specification for B. For example, assume that we have the specification of a system LISTS
describing the properties of lists. This specification includes sorts LIST and ELEMENT; on the
former sorts, it has attributes such as empty and transforms such as insertJront, inserCback,
append etc. Now assume we have a specification which needs lists of integers and lists of reals.
Then this specification will have sorts INTEGER, REAL, INTEGER_LIST, and REAL_LIST;
its interface paragraph will need two use clauses, as follows:

system S interface

from LISTS use

ELEMENT renamed INTEGER ,.

LIST renamed INTEGER~IST ,.
empty renamed empty-integer_list ,.

insertJront re.named integer_insertJront ,.

inserCback renamed integer_inserCback ,.
append renamed integer_append ,.

- - etc.

end LISTS use ,.

from LISTS use

ELEMENT renamed REAL ,.

LIST renamed REAL_LIST "
empty renamed empty_reaLlist ,.

insertJront renamed reaLinsertJront ,.

inserCback renamed reaLinserCback ,.

append renamed reaLappend ,.

- - etc.

end system interface

The fundamental rule here is that no overloading of names.whatsoever is permitted in
the LM notation: any conflict must be resolved by renaming as above. As a consequence of this
rule, if several properties are given for the same object and they are not logically contradictory,
they are considered as cumulative rather than conflicting.



The reader may have noted that the process of writing an M specification, as seen so far,
is rather open; one may write many things, and not much control is exercised, even though the
method uses potentially unsafe features like partial functions.

What justifies this somewhat easy-going approach is that at early stages the most difficult
problem is to understand what the system is all about; so the emphasis in the M features seen so
far has been on expressive power more than security. One should not prematurely confuse
specification with verification.

This cannot go on forever, however: one of the primary aims of specifications, especially
formal ones, is to significantly increase the trust that users can put in software systems. So at
some point one has to get serious about the consistency of the specification.

Thus we now study the properties that must be proved to make sure that an M
specification is consistent. Such properties are of three kinds:

• invariant-transform consistency (transforms preserve invariants);
• constraint consistency (constraints are meaningful);
• constraint-effect consistency (effects are meaningful under the given constraints).
The rules given below imply relatively tedious proofs. The need for verifications of the

last two kinds should be considered in light of the ease of specification gained by the use of
partial functions. As opposed to other specification methods (e.g. the traditional way of dealing
with abstract data types, see[7,8]), the M specifier does not have to clutter his system
description with special cases for "error elements" associated with each type. He can thus
concentrate on the meaningful properties of the specification. The price to pay for this
simplicity of expression is the need to check the consistency of the eventual specification (and to
correct possible oversights resulting from inadvertently using a function outside its domain). It
is expected that this latter process should be strongly supported by tools.

6.2 - Consistency of modular specificationa

When defining consistency, we shall be talking in terms of a single, independent
specification; for specifications with interface paragraphs, the proofs described below need to be
performed OQ the composite specification resulting from combining the elements of the given
specification with all those it uses from other specifications.

Assuming the specification or S rerers to T, we thus request as consistency proor for S a proor or the
composite specification combining the specification or S with all the elements it uses from T. It would
clearly be much prererable to separately prove the consistency or T and the conditional consistency or s.
Further im"estigation is needed on this problem. which is made non-trivial by the versatility of the

modular facilities or M.

Consider a !5ort X~_A funeti()n Lon X (attribute or transform) may be modeled
mathematically as a possibly partial function of the form

/ : X -+ (Y -+ Z)

where Y is a one-element set if / has no parameters, and Z is the same as X in the case of a



transform.
We shall denote by Cf the function defining the constraint on f; that is to say, Cf is of

the form
Cf : X -+ (Y -+ BOOL)

where BOOL is the set {true, false}. Function f is applicable to x and y if and only if

x. Cf [y]

has value true (note that we apply to Cf the same dissymmetric dot notation used for
attributes and transforms).

If f is a total function, then Cf is identically true. Otherwise, f appears in the constraints
paragraph with a clause of the form

x in domain fror y iffrf Ix, y]
rf [x, y] must be expressed in terms of some of the attributes of x; in other words, rf [x, y] is
of the form
rf Ix. 01 (y), x. 02 (y), ... x. Onl (y)1

where 0h 02, '" onl are attributes on sort X. Let Attrib (Cf) be the set of attributes
{Oil 02, ••• On/}' i.e. the set of all attributes on X t.hat take part in the definition of the
constraint on f. Attrib (Cf) is empty if f is total.

Similarly, if a is an attribute on sort X and t a transform on X that may change a, there
will be a line in the effects paragraph of the form

x. t (y). a (z) = z. E, .• IY, zl
where E, .• is the function defining the effect of t on a. We denote by Attrib (E".) the set of
attributes that appear in the expression for z. E, .• IY, z].

Finally, for an invariant of the form z • I (z), we write Attrib (I) for the set of attributes
that appear in I.

6.4 - Invariance properties

The first kind of properties to be checked is that the invariants are preserved by the
transforms.

Let t be a transform on a sort X. The set of attributes on X that may be changed by t is
given in the transforms paragraph. For each such attribute a, the effect E, .• of t on a is given
in the effects paragraph; note that this clause is only valid when the application of the
transform and of the attribute is defined.

Denote by ALLINV the conjunction of all the invariants involving attributes on sort X.
Let I be one of these invariants, involving a (and possibly other attributes on X). I appears in
the invariants paragraph under the form

z. I (z)

with implicit u~iversal quantification on x and z.
To say that transform t is consistent with the invariants means that for any such,

invariant I, whenever an element x satisfies ALLINV (thus, in particular, I) and t is applied to
x, the resulting element z • t (y) satisfies I.

This property is only required to hold when the transform is applicable, i.e. when the
constraint C, holds on x. Hence the first law of consistency:



For any sort X, any invariant I involving elements of X and any transform t on X,
the following must hold:

\I x, y, z, (x • C, [y] /I. (\I z', x • I(z '))) ==;> x. It,a (y,z))

where x. It,a (y,z) is the expression obtained by substituting, for every attribute a E
Attrib (I), x. Et,(> [y,z] for x. a(z) in x. I(z).

A15 an example, let us consider invariant i3 of the above example specification and prove
that it is preserved by transform make_global. The invariant is

i3: 8. globfile (8. globname (/)) = / ;

The property to be proved is:

\I 8 E STATE, I' E FILE, 9 E GLOBAL_NAME,

(Cmakglobal [/ " g] /I. (\I / E FILE, ALL/NV)) ==;> {3

where {3 is i3 with 8 • make_global (f " g), as obtained from the effects paragraph, substituted
for 8. In other words, f 3 is

8'. globfile (8'. globname (/)) = /

where

8' = 8. makcglobal (/', g)

Let Ih8 be the left-hand side of f3' We have
lh8 = 8'. globfile (g')

with 9 , = 8. make_global (/', g). globname (/)). The effect Emake_global, globname gives that

9 , = if / = I' then 9 else 8. globname (f ) end if

Thus, factoring out the conditional expression, we get:

lhs = if / = /' then 8'. globfile (g) else 8'. globfile (Be globname (f )) end if

The value obtained in the then clause is

Be make_global (t, g). globfile (g)

that is to say /" according to the effect Emd:e_global, globfile'
The value obtained in the else clause is

that is to say, applying Emake_global, glo6file again:

if 9 = 8. globname (f ) then/, else 8. globfile (8. globname (/)) end if

where the second ca:,>eis just / because of the presence of invariant ia in the hypothesis. Thus
we get the following expression for the left-hand side Ih8 of {3 (which we must prove is equal to
f):



it I = f' then f'
else it 9 = a. globname (J ) then f'
else I
end it

The value of this expression is I in the first and third cases. But the condition for. the
second case, namely 9 = a. globname (J ), is contradictory with the constraint on s. make_global
(I', g), as defined in the constraints paragraph:

not Be uaetLglobname (g)

when one takes into account the invariant is4:

a. uaetLglobname (a. globname (I))

Thus the value of lha is I in all legal cases, which concludes the proof that transform
make_global preserves invariant ia.

Note that as evidenced by this example, it is necessary in general to include the relevant
constraints and all the invariants in the hypotheses for invariant preservation proofs.

A proof such as the above one (for just one transform and one invariant!) is not difficult
but tedious; supporting tools are obviously required.

6.6 - Constraint consistency

The constraint consistency rule ensures that constraints are meaningful as given in the
specification.

The problem here is that the constraint on a transform or attribute may be defined in
reference to one or more attributes, some of which may be partial. This is quite clear in the
example discussed above: the constraints on attributes owner and key as well as those on
transforms copy and take refer to taken, itself a partial attribute. Thus the problem arises of
whether the constraints define anything at all.

This problem is solved by imposing a strict order on constraints.

Consider the relation 8 defined as follows:
I 89 if and only if the constraint on I refers
to 9 (where I is an attribute or a transform
and 9 an attribute).

Then the relation 8must be acyclic.

This rule (which is indeed satisfied by our example of section 4), must be understood
together with the convention defined in section 4.7: in the predicate defining a constraint, any
subpredicate involving a partial function is considered false outside the domain of that
function.

This corresponds to a special logic for dealing with undefined ness, different from the ones
examined in [3], with the following truth tables.

4 It may be worthwhile to mention that we had initially overlookI'd the need for invariant is. It is only wh('n
trying 10 prove the invariance of ia that we realized the invariant now called is W35 required to carry out· this
proof, 35 shown here.



The symbol 1denotes the result of applying a function outside of its domain.

The first two tables (for equality and inequality) apply to a simple flat domain with
elements 0, 1, 2,1 and can be 'generalized to any flat domain.

The next three tables (for and, or and not) are to be used for constraints involving
attributes that return boolean results. Such a boolean-valued attribute, usually total, is often
used in connection with a partial attribute, to serve as explicit characteristic function on the
domain of the latter: in our example, file_exi3t3 plays this role for file_ai_name, u3e~globname
for globfile and taken, taken for owner and key (but globname has a non-boolean attribute,
mode, for this purpose).

0 1 2 1
0 t I I I
1 I t I I
2 I I t I
1 I I I I

"* 0 1 2 1
0 I t t I
1 t I t I
2 t t I I
1 I I I I

itI t
1 I

II I 1
t t I I
I I I I
1 f f I

V f 1
t t t
I I I
1 I I

~ .! 1
t t I I
f t t t
1 t I I

Note that (a ~ b) == (..., a vb). But De Morgan's laws are not satisfied when undefined
elements are taken into account: for example, -. 1 V ..., t = I, but..., (1 II t) = t. Even a
simple law of boolean algebra such as ..., ..., a = a does not hold for 1.Also, the basic functions
are not strictly monotonic.



The motivation for this seemingly strange logic should be clear. Logical expressions
appearing in constraints define the conditions under which a given function, say f, may be
applied. Since all the other properties of f (invariants and effects) are meaningless outside of
the domain of f, it is essential to know for sure that f is defined when we need it. Thus if the
constraint on f involves another partial function, a conservative attitude ("when in doubt, say
no!') is taken: any condition that is not defined is considered to be false.

6.6 - Constraint-Effect Consistency

The last type of property to check relates to the effects. The effect of a transform t on an
·attribute a is given under the form

%. t (y). a (z) = Ze Et •• (y, ~

where t and /J may be partial functions, and the right-hand side is an expression that may also
involve partial functions. The interpretation given in section 4.6 is that the effect is only
applicable when the left-hand side is defined; but then one should make sure that the right-hand
side is defined. This is the constraint-effect consistency problem.

Informally, the constraint-effect consistency rule expresses that whenever the constraints of
the specification imply that the left-hand side %. t (y). /J (z) is defined, then they must also
imply that the right-hand side %. E,.• [y, ~ is defined.

In other words, if %. L
"
• (y, ~ is the condition for the left-hand side to be defined, and if %

• R
"
• (y, zj is the condition for the right-hand side to be defined, the constraint consistency rule

is that

V %, y, Z, %.L".(y,z] ~ %.R".[y,z]

To refine this rule, we must examine more closely the conditions under which each side of
the "effect" specification is defined.

The right-hand side, %. E, .• (y, zj, is usually given by case analysis (as in the example
above; recall that the replace •.• form is an abbreviation for a conditional expression):

if %. Condl (y, z) then % • Vall (y, z)

else if Ze Cond2 (y, z) then % • Val2 (y, z)

else if Ze Condn_l (y, z) then z • Valn_l (y, z)

else z • Vain (y, z)

end if

The condition for such a conditional expression to be defined is:

% • R
"
• [Y, zj =
if Ze Condl (y, z) then z • Definedl (y, z)

else if %. Cond2 (y, z) then z • Defined2 (y, z)

else if z •.Condn_1 (y, z) then x • Definedn_l (y, z)

else x • Definedn (y, z)

end if

where % • Defined; (y, z) is the condition for z • Val; (y, z) to be defined, obtained as the
conjunction of all the constraints % • COt [Y, z] for every attribute a E Attrib (Val,) occurring in
the definition of the i-th alternative. This right-hand side is usually less formidable to determine
in practice that the above general form would suggest (an example is given below).



We now examine the left-hand side of the "effects" specification for t and a. This left-
hand side is a function composition (of t and a). A basic theorem on partial functions is that, if
/ and 9 are two functions and h their composition (in this order), then

domain (h) = {a E domain (f) I / (a) E domain (g}}

Thus, for the left-hand side to be defined, two conditions must be met:
e The constraint on t, namely % • Ct [y r ;
e The constraint on a, namely C., but applied to the result %'= x. t (y) of applying the
transform. According to the notation introduced in section 6.3, this constraint may be
expressed as
r. [x'. 0\ (z), x'. 02 (z) •... %'. On/ (z)]

This condition applies to x', not x. It can be transformed into a condition on x, however,
by using the "effects" defined for t and the attributes in Attrib (r). The condition will be:

x. derived_constraintt,. (y, z) =

r. [x. Et,a, [y, z], z. E"a2 [y, z], ... x. Et a [y, zll
, "J

The last consistency rule follows from this analysis.

For any sort X, any transform t on X, any attribute a changed by t, the following
must hold:

where
e Rt,. is the condition for Et,. to be defined, and
ex.Lt,.[Y,z] = x.Ct,.[Y] /\ xederivetLconstraint

"
• (y,z)

and x • derived_constraintt .• (y, z) is the expression obtained by substituting, for
every attribute 0 E Attrib (r.), x • Et,a [y,z] for x • o(z) in the expression r. (...)
defining the constraint x • C. [z] on a.

As an example of the application of this rule, let us prove the constraint-effect consistency
of owner with respect to take in the above specification. Their effect clause may be expressed
as:

8e take (g, /, u, k). owner (g') =

if 9 = g'then u

else s. owner (g') end if

(Recall that the replace ..• form is just an abbreviation).
The condition 8 e R,.Jee,oumer [g, /, u, k, g'] under which the right-hand side \s defined

follows from the constraint on attribute owner:

s. RtdJ:e,ollJ1ler [g, /, u, k, g'j = (g':#= 9 =;> 8e taken (g'})

The condition s • L'dJ:e, own.r [g, /, u, k, 9 '] under which the left-hand side is defined is of
the form



8 • Lta£<, olllner [g, f, u, k, 9 ,j =
8. Ctake [g, f, u, k} and
8 • L ' [g f u kg']

take, owner ' , , ,

The first operand of the and is the condition under which take is applicable, namely:

8 • Clake [g, f , u, k] =
(Be globfile (g).ltype =1.ltype and not (Be taken (8. globname (I)))

and not 8 • taken (g))

The second operand is the condition under which owner is applicable to the result of take,
namely, given 8' = 8. take (g, I, u, k):

,.L't_
L

[g,/,u,k,g'j=8'.taken(g')
<ll<e, owner

To expand this condition, we apply the effect Etde,lden of take on taken, namely

,. take (g, I, u, k). taken = replace B • taken at 9with true

and obtain:
8. L '

t
_
L

(g, I, u, k, 9 ') = if g' = 9 then true else Be taken (g') end if
<ll<e, owner

It foIlows from this form that the validity of 8 • Ria£<, owner [g, I, u, k, 9 '] is implied by , •
L'lake,olDflor [g, I, u, k, 9 'I, and thus by ,. Llde,olDfler [g, I, u, k, 9 '] as weIl.



Once the specification paragraphs have been completed, it is possible to remain in the
same framework when going on to the next stages, design and implementation.

The relative difficulty of producing a complete specification (especially if the consistency
proofs are performed seriously) pays off at this point. AB should be clear from the outline given
below, the existence of an adequate M specification provides strong guidance and help during
the design and implementation process.

AB in the previous section, we consider the combined specification possibly resulting Crom
merging several descriptions.

The first non-specification paragraph is the design paragraph. By "design", we mean here
"architecture": the aim of this paragraph is to express the design decisions leading to a
decomposition of the software into modules.

Starting Crom the M specification, such a decision is very easy to express. The whole
description is based on the sorts; thus it suffices to distribute the sorts among modules. The
Cunctions (attributes, transCorms) will automatically follow since each has been attached to one
and only one.

Thus a typical design paragraph will have the Corm:·

module MODULE_l sorts

A;

B; - - ete. (names 0/ sorts 0/ the system)
end MODULE_l sorts ;

module MODULE_2 sorts

c;
D;

E; - - ete.

end MODULE_2 sorts;

module MODULE_9 sorts

F; - - ete.

end MOD.ULE_9 sorts;

end system design;

This decomposition embodies the designer's architectural choices. Note that in a pure
object-oriented decomposition a. la Simula or Small talk there will be exactly one sort per



module. In general, however, the designer has some leeway in the assignment of sorts to
modules. The main criterion is to minimize the amount of intermodule communication.

In order to evidence such communica.tion, an imports paragraph may be written, that
spells out for every module the elements needed from other modules.

We will again rely on an example. Assume the above decomposition: MODULE_l is
responsible for sorts A and B, MODULE_2 for C, D and E, and MODULE_9 for F. Assume
that the attributes paragraph for the system defines attributes attrl, attr2 and and attr9 on A,
attr4 on B, attr5 on C and attr6 on E, as follows:

on A attributes
attrl : B total; - - whether" totaf' or" partiat' doesn't matter for this discussion

attr2 (E) : D total;

attr9 : C total;

end A attributes;

on B attributes
attr4 : A total;

end B attributes ;

on C attributes
attr5 : D total i

end C attributes;

on E attributes

attr6 : F total ;

end system attributes ;

MODULE_l is in charge of sorts A and B, thus of their attributes attrl, attr2, attr9 and
attr,f; because of the second and third, it needs access to sorts C, E and D, managed by
MODULE_2. Access to a sort does not necessarily mean access to the functions on that sort;
the most restricted. kind of access just implies the ability to name elements of the sort as
arguments or results of a functio.n(e.g. here elements of sorts E and D in connection with
attr2). This type of access is not unlike using a "limited private" type from another module in
the programming language Ada.

Access to another module's sorts is not, however, the only type of intermodule
communication that will be required once we consider not only the attributes but also the



on A transforms

trans! (C) total change attrl, attr2 j

end system transforms;

The effects of transform trans! on attributes attrl and attr2 are described in the effects
paragraph:

system S effects
declare a : A, c : C, c : E, ... j

a. trans! (c). attrl = E'ransf,atlrJ [a, cJ j

a. trans! (c). attr2 (c) = E'ransf,allrZ[a, c, cJ j

To define these effects, the expressions E,rans!,allrJ and E,ransf.alld may need to refer to
attributes of objects c and, in the lattf'r case, c, for example attr5 and attr6. MODULE_l is in
charge of trans!, a transform on sort A, and is thus responsible for its effects as well. In terms
of information flow, this means that MODULE_l must have access not only to sorts C,D,E and
F, but also to attributes attr5 and attr6.

In the same fashion, the invariants pertaining to a certain sort may involve other sorts
and attributes and thus imply inter-module communication.

The imports paragraph is used to describe these access requirements. In the example, it
will have the form:

system S imports

on MODULE_l imports

froin MODULE_2 use C, D, E, attr5, ..... j

from MODULE_9 use F, attr6, ..... j

end system imports j

There is no new information in the imports paragraph: it is a combined consequence of the
design paragraph and of the previous specification paragraphs. Thus the TM tools should be
able to synthesize the "imports". In the absence of such tools, however, it may be useful to



write this paragraph by hand since it gives interesting information on the structure of the
software.

7.3 - Implementation

The next step is to go to implementation6. Here the method may help in several ways.

The first application is the representation of data structures. A possible policy is to
represent every sort by the cartesian product of its simple attributes; in terms of the discussion
in section 1.1, this means going Crom an implicit to an explicit definition once the list of
attributes is frozen. (This list may result from combining several specifications if the modular
facilities of M have been used).

Take for example the POINT definition of section 1.1, with attributes rephrased here in
the LM notation:

on POINT attributes
% : REAL total ;

y : REAL total ;
z : REAL total ;

speed: VECTOR total;

end POINT attributes;

If we decide that this list oC attributes IS complete, then we can proceed to the
implementation of POINTs as records:

type POINT =
record

%, y, z : real;
speed: VECTOR

If the structure of the simple attribute definitions is directly or indirectly recursive (e.g.
there is an attribute on A with values in B, and an attribute on B with values in A), then
pointers must .be used. Thus the implementation paragraph will contain sections of the
following form, assuming the above example (where attrl and attr9 are attributes on A, yielding
results in sorts Band C respectively, with recursion in the first case):

8 Tht' stt'p t'allt'd here "implementation" will result ina program which one may want to writt' in a language
("PDL" or "pseudocode") different from the programming language used ror the final t'oding. In surh a caS(' what
we call "implementation" is really the sortware lirerycle step known as "detailt'd design"; a straightrorward
translation step is needed 10 produce the executable program.



implement A as record j

implement attr9 as 0 field j

implement attrl as B pointer j

- - .... more (see below)

end system implementation;

Implementation clauses may also be written for non-simple attributes (those with
arguments) and for transforms. Let us first study the latter case. Transforms will be
implemented as procedures with side-effects on their first parameters, corresponding to the sort
"on" which each transform is defined. Here the specification provides guidance in the form of a
precise pre-and post-condition. Assume as previously a transform trans! on sort A, defined in
the corresponding paragraph as

trans! (0) total change attrl, attr2 j

The implementation part will then contain a clause of the form

implement trans!as

procedure

(a: in out A ;

c : in OJ

In this notation, Oonstr'rans/, INVA,lran./ and EffA,lran./ are boolean-valued expressions
(predicates) involving a and c: Oonstr'ran./ is deduced from the constraint on transf in the
constraints paragraph; INVA, Ira ••.•/ is the conjunction of all the invariants that involve one or
more of the attributes on A that may be changed by the transform (attrl and attr2 in our
example); and EffA,tran./ is the conjunction of the relevant effects as defined in the effects
paragraph.

Thus the specification yields a very strict framework for building the various procedures
involved: the role of each procedure is precisely defined as a precondition-postcondition pair. All
that remains to be done is to write a procedure body that will satisfy this pair (of course this
may still require significant work).

Non-simple attributes (those with arguments) and will usually be implemented as
"functions" in programming language terminology, i.e. value-returning procedures with no side-
effects. Thus for attribute attr2 on A in the above example, i.e.

attr2 (E).: D j



implement attrf as

function (a: in A ; e : in E) return D

where INVE is the conjunction of all invariants on sort E and INVD is the conjunction of all
invariants on sort D, which the value returned by the procedure must satisfy.



We now give some general guidelines that should be helpful to writers of M specificationsi,
based in part on the experience gained through the modest (but non-zero) number of non-trivial
system specifications that have been written up to now in M.

8.1 - General form of a specification

As any (non-solitary) worker on formal specifications knows, any such specification usually
seem crystal clear to the person who has written it, and hopelessly obscure to anyone else.
Readability should thus be a basic concern. This is all the more important with a new method
such as M: many readers of a specification can be expected to have trouble both with the
notation and with the object domain of the specification (the real system being described).

The LM comment convention is the Ada one (a comment begins with two consecutive
hyphens and extends over the rest of the line). Comments are useful for explaining local details
of a specification; they usually do not suffice, however, to make a complete specification really
understandable.

Thus when preparing a specification for human readers (as opposed to automatic analysis
tools, referred above as TM), it is in generally advisable to present it as an article, with French
language explanations8 forming the bulk of the presentation and the formal material appearing
as inserts. Such inserts may be boxed, as in section 4 above; another acceptable solution is to
write formal elements on odd-numbered pages, with even-numbered pages serving as a running
commentary in natural language. The natural language text should serve both to comment on
the object domain (the system being described) and to explain how the M specification deals
with it.

8.2 - Incremental description

When trying to describe a system, either new or existing, one is often overwhelmed by the
amount of detail to be taken into account. The advice here is not to panic, but to focus on the
basic features first (like those that could be included in a beginner's manual for the system at
hand), then add more and more features in an incremental fashion. The modular features of the
M method should help to make this a smooth process.

If you are specifying an existing system that you know well, you should design the overall
structure of the specification beforehand. In other words, you should plan the specification as a
set of "systems" in the M sense, each corresponding to a level of abstraction in the description of
the real system being modeled. It is usually a good idea in this case to start out the
specification by writing the interface paragraphs of the successiveM systems.

Sometimes, the informal documentation associat.ed with a system may already distinguish between levels

of abstraction. thus easing the task of structuring the M specification. This is the case with such

examples as the i-layered ISO model for open inter~onnection of computer systelll5, the ACM Core
graphics library, etc.

1 Some of these rules obviously apply to other specifications methods as well.

8 English may in some cases be acceptable, as evidenced by this paper.



8.3 - Completeness

A question often heard about specifications is "When do we know we have written
everything of significance?", There is obviously no general answer to this question, since
completeness of a specification could only be defined with respect to a formal list of the system's
functions, and that is precisely what the specification is about.

Some guidelines can be given, however. For example, although it is hard be sure that no
attribute or transform has been omitted, the method implies checking each transform and each
attribute on a given sort to determine whether the transform may change the value of the
. attribute: this is an incentive to perform a systematic review of possible combinations. In
particular, one may see if there is any attribute not changed by any transform (not necessarily
an error, especially at an early stage in the specification process, but still definitely something to
look at).

The method also guarantees that once a transform has been declared to change an
attribute, the corresponding effect has to be included.

Finally, although one cannot guarantee that all relevant invariants have been included,
performing some of the proofs associated with the method will often reveal missing invariants.
This is part of our next topic, proofs.

The ability to prove properties of the specification is an essential feature of formal
methods. We have presented in section 6 the required proofs in M. Performing all these proofs
by hand is difficult. In the absence of adequate tools, it is still recommended to do as many
proofs as possible; this process reveals much about the system and will more often than not lead
to the discovery of errors or missing elements, as was the case with the example discussed in this
presentation (see the footnote in section 6.4).

The reader may have noted that the definitions given of attributes and transforms are not
exclusive. We defined an attribute on a sort X as being, mathematically, a function

f: X X VI X V2 X ... X Vm -+ Y

Nothing in the first definition precludes Y from being the same sort as X, so that any
transform may also be described as an attribute (the reverse, however, is not true in general).
Thus one may hesitate in some cases.

There is, however, a strong criterion for transforms which should help dispel the hesitation
in any particular case. A function may only be defined as a transform on X if one is able to list
precisely the attributes of X that this transform may change; although the exact way in which
each of these attributes is affected will only be given later (in the effects paragraph), one must
still be prepared to spell it out in full detail. If such a complete specification of the function's
effect cannot be given, then the function is an attribute, not a transform.



AB will be clear from this paper, there remains a lot of work to do on M. We list below
our main current focuses of attention.

9.1 - Concrete Syntax

The concrete syntax of the LM notation clearly needs some polishing. The language must
be defined more extensively. Some syntactic sugar is needed; for example, it should be possible
to define functions (attributes or transforms) with an infix syntax. Also, it may be useful to
define functional and relational operators (composition, transitive closure and the like) to avoid
the current restriction to low-level expressions of first-order predicate calculus in invariants,
effects and constraints.

So far we have steadfastly resisted the temptation to add nice but non-essential syntactic
features, and plan to do so until the dust has settled on the fundamentals concepts.

It should be noted that the M method is, to a certain extent, independent from the
particular notation (LM) presented in this paper. Other choices of specification languages could
still be compatible with ~he basic principles of M.

9.2 - Completeness or the notation

More important than syntactic extensions is the problem of whether all the facilities
needed to describe actual systems are present - in some form.

One construct, not used in the example of this paper, is most likely to be needed: a
constructor of the form

some z in X where z. E end
where X is a sort and E a boolean-valued expression, possibly involving attributes. Such an
expression denotes an element of the sort satisfying the given condition. Note that in
accordance with the "implicitness" essential to the M approach, one only specifies those
properties of z that are needed.

An important problem that needs further theoretical investigation is the intrinsic power of
the basic M semantic device: spelling out the effects of every transform on every attribute it
may change. There may be a need for more partial characterizations of a transform's effect (by
properties resembling invariants, but involving transforms as well as attributes).

The formalism lacks a notion of system initialization. In particular, the consistency proofs
(section 6) should include not only invariance proofs as given, but also proofs that the "initial"
elements (those given in the has clauses of the sort definitions) satisfy the invariants. There is
probably a need for an "initial" paragraph, describing properties of these initial objects;
properties such as the invariants called it to is in the invariants paragraph of our example
(section 4.4), which are quite different in nature from the other invariants, would belong there.



9.4 - Errors and partial functions

We think that partial, functions are the right mathematical tool for dealing with
computations that may not always produce a normal result. However, the treatment of
abnormal cases and the notion of doppelganger function must be clarified.

An essential aspect in making M (and other formal methods) practical is the need for
tools. We hope to be able to base an support system for M (TM) on two sets of software
engineering tools currently being developed:

• Cepage, a general-purpose screen-oriented structural editor [11], which is easily
adaptable to any new language, whether a programming language or a specification
language like LM;

• the Software Knowledge Base, a system for configuration and project management,
which keeps track of the entities in a software project (called "atoms"), the relations
between these entitles [13J, and the constraints that must be satisfied by atoms and
relations.

More theoretical work is clearly needed. The position of "M theoretician-in-residence" is
open.
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