
2

Mathematical background
Mathematicians are like Frenchmen: whatever you say

f
to them they translate into their own language and
orthwith it is something entirely different. . .

Goethe

e
p
This chapter introduces the essential mathematical concepts needed for the rest of th
resentation, and some of the basic conventions used in this book to express formal

specifications.

These are mostly conventions borrowed from standard mathematics, augmented by
.

S
some notations specifically designed for the modeling of programming language concepts

ince it is convenient to have a name, the resulting metalanguage will be called Metanot.

2

2.1 CONVENTIONS AND NOTATIONS

.1.1 Typographical and naming conventions

e
w
Any notation that belongs to either a programming language or the Metanot metalanguag

ill be in italics, with some keywords in boldface.

l
n

Names of sets (for example syntactic domains, as introduced in the next chapter) wil
ormally start with an upper-case letter, for example State; names of members of these

r
c
sets are in lower-case, for example initial_state. Function names will also be in lowe
ase (although functions are formally defined as sets below).

n
t

When set names are words borrowed from ordinary English, they will as a rule be i
he singular; that is, when a set of ‘‘states’’ is needed (chapters 4, 6, 7, 10), it will be

a
m
called State rather than States; this is in part because it is appropriate to introduce

ember of this set, say s, by writing

w

s: State

hich reads naturally as ‘‘s is a State’’.

This is chapter 2 of the book Introduction to
the Theory of Programming Languages, by
Bertrand Meyer, Prentice Hall, 1990.
Copyright 1990, 1991, Bertrand Meyer

MATHEMATICAL BACKGROUND16 §2.1.2

I

2.1.2 Meta-comments

n a formal definition expressed in Metanot, any sequence of characters beginning with
e

d
two dashes (--) and extending to the end of the line is a comment, which is not part of th
efinition (this is another notation borrowed from programming languages, in this case

Ada and Eiffel).

Comments may need to refer to identifiers (from Metanot or from programming
s

m
languages) that, as indicated above, are written in italics. The names used as identifier

ay be words of everyday language. To avoid any confusion, plain comment text is in
roman font, as in the following (somewhat extreme) example:

v

-- The value of value is equal to the value of equal

alue = equal

T

2.1.3 Definition vs. equality

he equal sign = is commonly used with two different meanings. Consider the following
mathematical statement:

Let a , b , c be real numbers. Let D = b − 4ac . If D = 0, then2

2 .
_
the second-degree polynomial ax + bx + c has two equal roots
__

:
i
The two equal signs in this extract play quite different roles. The first denotes a definition
t introduces a new object, D , in terms of previously introduced ones. The second is a

e
t
relational operator, applied to two operands D and 0, and yielding a result that may b
rue or false depending on the value of D .

In precise formal specifications, we cannot tolerate such possible confusions, and
e

e
need distinct symbols for distinct operators. In Metanot the equality symbol = will serv
xclusively as relational operator (the second case). For ‘‘is defined as’’, Metanot will

follow a widely established convention by using the symbol = . With this notation, the∆

above mathematical statement, properly rewritten, becomes

Let a , b , c be real numbers. Let D = b − 4ac . If D = 0, then∆ 2

2 .
_
the second-degree polynomial ax + bx + c has two equal roots
__

eThe definition symbol = is the appropriate one for function definitions, such as th∆

definition of f (p), using a case expression, in 1.4.3. Since we will define many
functions in the rest of this book, = will be a common sight.∆

CONVENTIONS AND NOTATIONS 7§2.1.3 1

∆ g
g

If you ever hesitate on whether to use = or = in a particular case, the followin
uidelines should provide an immediate answer:

• If you may replace the symbol by some other relational operator (such as ≤ on
lnumbers, the ‘‘and’’ operator on booleans, or the subset operator ⊆ which wil/\

be introduced shortly), and still yield a formula that makes sense — perhaps a
l

o
wrong formula, but one that means something! —, then you need the relationa

perator =; otherwise you should use the definition operator = . For example, the∆

e
a
first equal sign above serves to define D , so replacing it by > or ≤ would b
bsurd; but the second expresses a condition that could be replaced with D > 0

•
and still yield a meaningful sentence.

If reversing the order of the two operands yields a meaningless sentence, then you
r

e
have a definition, not an equality. This applies to the first operator in ou
xample, since if we change it to read ‘‘Let b − 4ac = D ’’ it stops making any

•
sense.

2

Expressions such as ‘‘if...’’, ‘‘such that...’’ and the like call for the relational
operator =; immediately after ‘‘Let x ...’’, you want the definition operator = .∆

T ∆he distinction between the = and = operators is not unlike that between equality and
s

r
assignment in programming languages. The Algol-Pascal-Ada-Eiffel line of language
eserves = for equality and uses := for assignment; this is closer to standard mathematical

s
practice than the Fortran-C-C++-Java convention of writing = for assignment and having
ome special symbol (.EQ. or ==) for equality. The designers of PL/I thought they

g
g
would satisfy everybody by using = in both cases and succeeded at least in providin

enerations of instructors with ready-made quizzes (guess what the instruction A = B = C
does).

Although such decisions only affect the ‘‘concrete syntax’’ of a language (contrasted
y

c
in the next chapter with the deeper properties captured by ‘‘abstract syntax’’), the
ontribute significantly to its elegance, or lack thereof.

W

2.1.4 Auxiliary variables in expressions

e can make a complex expression more readable by introducing local names to denote

g
subexpressions. In Metanot, the notation given ... then ... end allows this. Following
iven are the definitions of one or more local names introduced as abbreviations for

l
n
subexpressions; following the then is some expression e that may involve the loca
ames. The value of the expression as a whole is the value of e, determined after

r
e
substitution of the sub-expressions for each of the corresponding local names. Fo
xample, the expression

MATHEMATICAL BACKGROUND18 §2.1.4

given
D = b − 4 a c ;∆ 2

* *
∆ * a

then
denom = 2

denom

− b + D

i

end

√

s an expression denoting exactly the same thing as

c− b + b − 4 a2√
2 *

* *

a

The = symbol is the appropriate one in the given clause, which says ‘‘let . . . be defined∆

.as ...’’

The given ... construct is a mere notational device that adds nothing to the intrinsic

t
power of the metalanguage. The ‘‘local names’’ are not variables in the sense in which
his word is used in programming; a ‘‘definition’’ such as x = x + 1 would be just as∆

e
c
meaningless in a given ... clause as it is in mathematics. More generally, if the claus
ontains a definition

x = e∆

then expression e may only involve independently defined objects, or objects introduced
f

d
by a previous definition of the same clause. This is the principle of non-creativity o
efinitions: a definition introduces new names for existing objects or properties; it does

n
not introduce new objects or properties. Chapter 8, devoted to recursion, will examine the
on-creativity principle in more detail, and reveal that you may actually use certain kinds

p
of recursive definitions (definitions in which e seems to involve x) without violating the

rinciple. Until then we have to be quite strict, limiting what may appear in the right-
hand side of a definition to:

• Well-known mathematical objects, such as integers.

• Items introduced as the left-hand side of previous definitions observing the same

T

rules.

he extensions of chapter 8 do not actually changes these rules; they simply allow, for

r

convenience, certain kinds of definition that seem to be recursive, but can easily be

eformulated in non-recursive terms.

§2.1.4 19CONVENTIONS AND NOTATIONS

S

M

2.2 PROPOSITIONAL AND PREDICATE CALCULU

etanot uses standard boolean operators. If a and b have boolean values (true or false),
then:

• a b, read as ‘‘a and b ’’, is true if and only if both a and b are true.

•
/\

a b, read as ‘‘a or b ’’, is false if and only if both a and b are false.

•
\/

¬ a, read as ‘‘not a ’’, is true if and only if a is false.

• Boolean implication uses the symbol ==> ; the implication a ==> b , read as ‘‘a
aimplies b ’’, is defined as ¬ a b . In other words, a ==> b is true except if\/

is true and b false. Note in particular that a ==> b is true whenever a is false.

l

This property that false implies anything takes some getting used to when you start the study of

ogic, but it makes sense: ‘‘a implies b ’’ means that if a is true, b is true as well; the only way

e

t

to defeat this property (make it false) is to have a true and b false. If a is false the whol

hing is true. For example, it is true that

’

b

‘‘If I am the pope, two plus two equals 5’

ecause the only way you could invalidate this property would be to show that all these years I

f

t

have been hiding my secret life for all these years I am indeed the pope, and (the easier part o

he proof) that two plus two is not equal to 5. But since (personal disclosure) I am in fact not

s

the pope, you can’t invalidate this property, and it is indeed true, even though the right-hand

ide of the implication (2 + 2 = 5) is not. This is why we define a ==> b as ¬ a b : true if

I

a is false or b is true.

\/

nstead of the ==> symbol, most logic texts denote implication by the symbol ⊃ . But

a
most people other than logicians are more comfortable with ==> , which doesn’t cause
ny particular problem. In addition, ⊃ is also the symbol for the ‘‘superset’’ relation

s
d
between sets, whereas implication has a natural interpretation — especially in theorie
eveloped in this book, such as denotational semantics — as a subset relation, so it could

W

in fact be quite confusing.

e will also need the quantifiers of predicate calculus: (For all) and (There exists).V-
If E is a set and P is a boolean-valued property (true or false), then:

––
–

• x : E P (x) means ‘‘All members of E , if any, satisfy P ’’.V •-

• x : E P (x) means ‘‘There exists at least one member of E that satisfies P ’’.

T
––
–

•

hese definitions of the quantifiers are informal. Here are more precise ones:

• x : E P (x) is false if and only if there is a member x of E such that P (x)V •-
is false.

• x : E P (x) is true if and only if there is a member x of E such that P (x) is
t
––
–

•
rue.

As an important consequence, any expression for which the set E is empty is true —V-
––
–

.regardless of what the property P is. In this case, any expression is false

MATHEMATICAL BACKGROUND20 §2.2

t
c

The notations introduced above for quantified expressions reflects an importan
onstraint, enforced by Metanot to avoid certain theoretical difficulties. The dummy

e
E
identifier, x in the above examples, is always constrained to range over a specific set, her

. In other words: you cannot express a property of the form ‘‘All x satisfy P ’’ or

c
‘‘Some x satisfies P ’’; you must be more precise and express that all members x of a
learly specified set E , or some x in this set, satisfy P .

E

2.3 SETS

lementary set theory provides much of the basis for formal semantic specifications. This

2

section introduces the basic concepts and notations.

.3.1 Basic sets

The specifications will use a few predefined sets.

Z
c

The set of integers (positive, zero or negative) is written Z. The subset of
ontaining only natural (non-negative) integers is written N. R denotes the set of real

numbers.

The set of boolean values is written B; this is a set with only two members, true and
false.

The set of character strings is written S; character strings are written in double

2

quotes, as in "A CHARACTER STRING".

.3.2 Defining sets

You may define a finite set by enumerating its members in braces, as in

B = {true, false}∆

∅.As a special case, {} is the empty set, more commonly written

A set definition of the above form is known as a definition by extension. Another

c
way of defining a set (finite or infinite) is by comprehension, that is to say, by a
haracteristic property. For example, we may define the set of even integers as

Even = {n : Z k : Z n = 2 k }∆
––
–

• *

As with quantifiers, we always restrict the domain of the dummy variable (here n) to a
t

w
set assumed to be well-defined, such as a basic set (Z in the case of Even) or a set tha

e have previously defined by extension or comprehension. This means that when we
apply definition by comprehension it’s always to define subsets of known sets.

SETS 1§2.3.2 2

Metanot borrows from Pascal and other programming languages (Ada, Eiffel) its
f

i
notation for subsets of Z that are contiguous intervals: for a, b in Z, a. . b is the set o
ntegers (if any) between a and b included. Formally:

a. . b = {i : Z a ≤ i i ≤ b }∆ /\

.As implied by this definition, a. . b is an empty set if b < a

For any set E, P (E) denotes the powerset of E, that is to say the set whose members
l

a
are all subsets of E. For example, P (Z) is the set of all sets of integers; any interva

. . b as defined above belongs to that set.

I

2.3.3 Operators on sets and subsets

f E is a set and x is some mathematical object, x may or may not belong to E , also
stated as ‘‘x is a member of E ’’. The boolean expression

x ∈ E

has value true if and only if x is a member of E . For example, it is true that –2 ∈ Z, but
not that –2 ∈ N. The notation x ∈/ E is a synonym for ¬ (x ∈ E).

We may say ‘‘E contains x ’’ to mean the same as ‘‘x is a member of E ’’ (formally,
x ∈ e).

The only information that a set E carries about a certain object x is whether or not

E
x is a member of E . In particular, ‘‘how many times’’ x appears in E and the ‘‘order’’ of

’s members are both meaningless notions. The situation is different with sequences, as
will be seen below.

If A and B are two subsets of a given set E , then their union and intersection are
defined respectively as

A ∪ B = {x : E x ∈ A x ∈ B }∆ \/

A ∆ /\∩ B = {x : E x ∈ A x ∈ B }

The members of A ∪ B include any object that is a member of A or a member of B (or
both); those of A ∩ B include every object that is a member of both A and B .

We will also need the generalization to infinite unions and intersections. If a subset
E of a certain set E is given for every i ∈ N, then we can define

i

i : N
i

∆
––
–

•
i∪ E = {x : E i ∈ N x ∈ E }

}E = {x : E i ∈ N x ∈ EV-
i
∩
: N i

∆ •
i

MATHEMATICAL BACKGROUND22 §2.3.3

i
;

t
The first of these sets contains every object that is a member of at least one of the E
he second contains every object that is a member of every E .

i

.
I

The operator ⊆ , subset, takes two subsets as arguments and yields a boolean value
t may be defined by

A ⊆ B = { x : A x ∈ B }∆ •V-

that is to say, A ⊆ B (read: ‘‘A is a subset of B ’’) is true if and only if every member of
A is also a member of B . Its variant ⊂ , proper subset, is defined as

A ⊂ B = (A ⊆ B) (x : B x ∈/ A)∆
––
–

•/\

that is to say, all members of A are also members of B , but at least one member B is not
a member of A . (With ⊆ the two sets may be equal, but not with ⊂ .)

In line with the conventions introduced above, the operators ∪ , ∩ , ⊆ and ⊂
d

B
may not be applied to pairs of arbitrary set operands: in each case, both operands A an

must be subsets of a common set E .

A set may be finite or infinite. The expression finite E is true if and only if set A is

(
a finite set; for example, finite B is true but finite Z is false. If E is finite, then card E
the cardinal of E) is the number of its members; for example, card B is 2.

L

2.4 SEQUENCES, PAIRS, CARTESIAN PRODUCT

et X be a set. A sequence over X is an ordered list of members of X . We will write
sequences in angle brackets, as in

<monday, tuesday, wednesday, thursday, friday, saturday, sunday, monday>

d
i
In particular, <> is the empty sequence. The terms ‘‘sequence’’ and ‘‘list’’ will be use
nterchangeably.

The value appearing at the i-th position in the sequence for some i is called the i-th
element of the sequence. 1

Sequences, unlike sets, are ordered: the sequence <a, b> is distinct from the

o
sequence <b, a>. As the above example indicates, the same object can appear more than
nce; <a, a> is distinct from <a>.

The set of finite sequences over X is written X* . The next chapter introduces a few
operators on sequences.

To avoid confusions, this book is careful in its use of a few words often employed
i

1

nterchangeably when less precision is required: a set has members and a sequence has elements ; the
a

r
word object is more general and applies to any well defined mathematical entity such as a set,
elation, a function or a member of some set. The next chapter will add the concept of the specimens

of a syntactic type.

§2.4 23SEQUENCES, PAIRS, CARTESIAN PRODUCT

1 2 n
s2 Let be setX

n
A generalization of the notion of sequence is the tuple. X , X , . . .

≥ 0 X X X*
i

n() and be their union. A tuple built from the is a member of – a sequence of elements i

— of length , such that the -th element of the sequence belongs to (1). For example,
i

nX n i X ≤ i ≤
N, S N epossible tuples built from and ar

<3, "Text", 2>
>

T

<7, "Other text", 0

he set of all tuples built from given sets is called the cartesian product of these sets
and written

X × X × . . . × X
n

A

1 2

tuple with two elements is called a pair. Being sequences, tuples and pairs are ordered:
the pair <a , b > is not the same as the pair <b , a >.

If we use the same set X for all the X , the resulting tuples are just sequences. In
i

tother words, there is a one-to-one correspondence between X* and the se

X
i
∪
: N

i

0 1 i+1 s
X
where X is {<>} (the set with one element, the empty sequence), X is X , and X i

× X (for i ≥ 1).

2

i

.5 RELATIONS

Relations describe associations between objects. As used in this book, the word
r

e
‘‘relation’’ is a shorthand for ‘‘binary relation’’; more general multiary relations (used fo
xample for relational databases) will not be needed.

C

2.5.1 Definition

onsider two sets X and Y . A relation r between X and Y is a set of pairs

{<a , b >, <a , b >, . . . }1 1 2 2

i i
e

s
where every a is a member of X and every b is a member of Y. X is called the sourc
et of r and Y its target set. The following figure illustrates the finite relation

finrel = {<x , y >, <x , y >, <x , y >, <x , y >, <x , y >}∆
1 1 1 2 3 2 4 2 4 5

Although some people pronounce the ‘‘u’’ of ‘‘tuple’’ as in ‘‘ruble’’, it seems that the correct
m

2

odel is ‘‘rubble’’.

24 §2.5.1MATHEMATICAL BACKGROUND

Figure 2.1: A relation

a
r
This way of viewing relations as sets may be new for you, since you may think of
elation as a property that links objects, such as the relation ‘‘is the mother of’’ between

r
o
people, which links certain pairs of objects: Jill is the mother of Jane, Jane is the mothe
f John and so on. But it is not difficult to go from one viewpoint to the other: simply

d
<
consider the pairs of elements linked by the relation, such as the pairs < jill , jane > an

jane , john >. Now consider the set Is_mother_of of all such pairs,

Is_mother_of = {<jill , jane >, < jane , john >, ...}∆

that is to say, the set of all <mother , child > pairs in our set of persons; it completely
,

c
determines the relation, in the sense that m is the mother of c if and only if the pair <m

> is a member of the set Is_mother_of . So for us that’s what a relation is: a set of pairs.

c
The definition of relation finrel was by extension. You may also define a relation by

omprehension, as with the following relation between integers:

}pm_double = {<m, n> : Z × N (m = 2 n) (m = –2 n)* *∆ \/

s
t
Relation pm_double is so named because the first element of each pair is ‘‘plus or minu
he double’’ of the second. Elements include <0, 0>, <–6, 3>, <6, 3> and so on. Unlike

finrel, relation pm_double is an infinite relation.

The set of binary relations between X and Y is written X ←→ Y and defined as

X ←→ Y = P (X × Y)∆

meyer
Stamp

RELATIONS 5

I

§2.5.1 2

n words: X ←→ Y is the set whose members are all subsets of X × Y, that is to say all

2

sets of pairs whose first element is in X and whose second element is in Y .

.5.2 Domain and range

The domain and range of a relation r, written dom r and ran r , are the sets of objects
r

o
that appear as first and second elements, respectively, of at least one pair that is a membe
f r:

dom r = {x : X y : Y <x, y> ∈ r}∆
––
–

•

∆
––
–

• }

T

ran r = {y : Y x : X <x, y > ∈ r

he domain of a relation is a subset of its source set and its range is a subset of its target
set. For the above two relations:

dom finrel = {x , x , x }1 3 4

51 2 }

d

ran finrel = {y , y , y

om pm_double = Even -- The set Even was defined on page 20

2

ran pm_double = N

.5.3 Inverse and image

Let r be a relation in X ←→ Y . Its inverse, written r , is another relation, a member of
Y ←→ X , defined as follows:

–1

r = {<y , x >: Y × X <x, y > ∈ r }–1 ∆

–1In other words, r contains a pair <y, x> if and only if r contains the pair <x, y>. In the
first example above, finrel is–1

1 1 2 1 2 3 2 4 5 4 }

T

{<y , x >, <y , x >, <y , x >, <y , x >, <y , x >

he inverse of relation pm_double is abs_half; you can easily see what it is.

e
s

Let A be a subset of X , that is to say A ∈ P (X). The image of A through r is th
ubset of Y containing the objects related by r to at least one member of A . This image

will be written r (A); its precise definition is:• •

• • ∆
––
–

• }r (A) = {y : Y x : A <x, y > ∈ r

MATHEMATICAL BACKGROUND26 §2.5.3

Taking the above relations as examples:

finrel ({x , x , x }) = {y , y }• •
1 2 3 1 2

•p •m_double ({1, –1, 6, –6, 0, 14}) = {0, 3, 7}
n

-
-- Here 1 and –1 are not in the domain of the relatio
- and so do not contribute to the image. Both 6 and –6

a

-- contribute the same object, –3.

bs_half (N) = Even

T

• •

he following figure illustrates the first of these examples.

n

E

Figure 2.2: Image of a subset by a relatio

xercise 2.6 includes important properties of the image operator, which will be
r

1
useful in the proof of consistency between axiomatic and denotational semantics (chapte
0).

meyer
Stamp

FUNCTIONS 7

2

§2.6 2

.6 FUNCTIONS

I

2.6.1 Definition

n general, given a relation r and an object x ∈ X , there may be zero, one or more objects
.

I
y ∈ Y such that the pair <x, y> belongs to r (there may even be infinitely many such y)
n relation finrel, for example, x has two ‘‘buddies’’, x has one and x has none.

A
1 3 2

relation such that there is at most one such y for every x is said to be functional.
.Relation finrel is not functional; it would be if we removed <x , y > and <x , y >1 2 4 2
r

v
Relation pm_double is functional, but its inverse abs_half is not (since, among othe
iolations, it associates both –6 and 6 to the value 3).

Y
(

The following notation will denote the set of functional relations between X and
the reason for using this particular symbol will be explained shortly):

X Y→
The set of functional relations is a subset of X ←→ Y . We may define it precisely as

X Y =→ ∆

•V- X{r : X ←→ Y x :

given
Image_of_x = r ({x })∆ •

then
•

finite Image_of_x (card Image_of_x ≤ 1)

A

end}
/\

functional relation is called a function. A function is an interesting kind of relation
t

e
since we have the guarantee that, for any member of its domain, it will give us jus
xactly one member of the range. For example the relation is_child_of_mother , which

2

holds between two persons if only if the second is the mother of the first, is a function.

.6.2 Partial and total functions

If f is a function (f ∈ X Y) and x is a member of X, there may be zero or one y such
t

→
hat the pair <x, y> belongs to f. If there is one, that is to say if

t

x ∈ dom f ,

hen you may refer to y as f (x). A function f ∈ X Y defined for all x ∈ X , in other
words such that

→

dom f = X

is said to be a total function. The set of total functions from X to Y will be written

2 MATHEMATICAL BACKGROUND8 §2.6.2

X → Y

An equivalent definition is to say that a function is total if and only if its domain is equal

s
to its source set. (In the general case, as we have seen, the domain is a subset of the
ource set.)

A function that is not total — in other words, some members of its source set are
e

w
not in its domain — is said to be partial. Note that whenever the discussion uses th

ord ‘‘function’’ without further qualification, it refers to both total and partial functions.
The bar across the arrow in the symbol serves as a reminder that f may be partial, in→

.

2

which case f (x) is not defined for some members x of X

.6.3 Finite functions

Because in practice computers deal with finite information — such as the content of their

a
memory — we will often encounter functions guaranteed to have a finite domain. They
re called finite functions. (Some authors prefer the term ‘‘finite mapping’’.) The set of

finite functions from X to Y will be written X Y , defined as→
∆→ →X Y = {f : X Y finite dom f }

To summarize the three conventions just seen:

• → is the symbol used for sets of total functions. If f is a total function you may
g

m
use f (x) without fear of writing something be meaningless, writing somethin

eaningless, since this always denotes a value for any x of the source set.

• indicates possibly partial functions; the bar reminds you to exercise care in→
using such a function, since f (x) is only defined for x ∈ dom f .

• indicates finite functions, the double bar reminding you that they can be even→
‘‘more’’ partial, since f (x) only makes sense for a finite set of possible x .

s
b
Finite functions are particularly important for the modeling of programming concept
ecause they are the only functions that can be entirely represented in the memory of a

e
t
computer: if a function has an infinite domain, there is no way you can ever hope to se
he result of a complete computation of the function.

O

2.6.4 Defining functions by extension

ne way to define a finite function is to indicate the value it takes for every possible
argument in its domain. This is similar to defining a finite set by extension (page 20).

FUNCTIONS 9§2.6.4 2

Figure 2.3: Two functions

e
p

To define a finite function by extension, we will simply list its constituent pairs. Th
receding figure shows two functions both in {a, b, c, d, e} N ; we may define them

as
→

f = {<a, 1>, <b , 2>, <c, 3>, <d, 4>}

2

1
∆

∆f = {<b, 2>, <c, 4>, <e, 4>}

The order in which you list the <argument, result> pairs doesn’t matter, but all the
a

r
arguments must be different if the definition is to yield a function rather than just
elation.

2.6.5 Defining functions by expressions

We saw (page 20) that it is possible to define a set not only by extension — by listing all

m
its members — but also by comprehension, through a characteristic property of its

embers. This was also applicable to relations. Definitions by comprehension is

f
particularly interesting for functions. This is the well-known technique of defining a
unction by an expression involving its formal arguments; to obtain the function’s value

l
a
for any actual argument values, it then suffices to substitute these values for the forma
rguments in the expression. A typical example is

meyer
Stamp

3 MATHEMATICAL BACKGROUND0 §2.6.5

[2.1]
square: R R→

*∆ x

T

square (x) = x

his definition means that to get the value of square (a) for any real number a , you
hsubstitute a for x on the right-hand side of the = sign, getting a a . In contrast wit∆ *
s

fi
definition by extension, such a definition by comprehension applies to infinite as well a

nite functions.

The formal basis for this technique is known as lambda calculus; we will study it in
e

c
detail in chapter 5. For the time being, definitions of the above form [2.1] will b
onsidered clear enough. To make it absolutely obvious what the source and target sets

t
and the domain of any function are, every function definition will consist of the following
wo or three steps. First you must give the source and target sets of the function under

one of the forms

f: X Y -- For a total function

f →
→

: X Y -- For a possibly partial function

f: X Y -- For a finite function→
Then (in the second and third cases only) you must specify the domain:

}dom f = {x ∈ X . . . Some boolean-valued expression on x ...∆

These two indications (one for a total function) constitute the function’s signature.

n
a

Finally, you must in all cases specify the value that the function yields for a
rbitrary member of its domain, as was done above for square :

f (x) = . . . Some value in Y . . .∆

using the ‘‘is defined as’’ symbol. For clarity it is almost always desirable, in this last
part of the definition, to repeat the sets to which the arguments belong, as in

f (x : X) = . . . Some value in Y . . .

w

∆

hich imitates argument type declarations in the routine headings of programming

B

languages (such as Pascal, Ada, Eiffel).

e careful not to confuse

f: X Y→
which gives the signature of f, declaring f to be some total function from X to Y, with

S = X Y∆ →

FUNCTIONS 1

w

§2.6.5 3

hich defines S as the set of all total functions from X to Y.

S

2.7 OPERATIONS ON FUNCTIONS

everal operations will prove useful on functions: we may define the intersection,

s
‘‘overriding union’’ and composition of two functions, the restriction of a function to a
ubset of its source set, the quotient of a set by a predicate (a function with a boolean

y
d
result). We must also study what becomes of the notions of inverse and image, originall
efined for relations, when we apply them to functions.

W

2.7.1 Intersection

e have seen that functions are a special kind of relations, themselves a special case of

f
sets. Since functions are sets, we may define the intersection of two functions, itself a
unction; it is the set of [argument , result] pairs that belong to both functions.

eFor example, the intersection f ∩ f of the two functions defined earlier is th1 2
:function pictured next, whose domain has only one member

h = {<b , 2>}∆

Figure 2.4: Function intersection

meyer
Stamp

3 MATHEMATICAL BACKGROUND2 §2.7.1

Here is the precise definition of function intersection in the general case:

Let f , g : X Y ;

L ∆

→
et h = f ∩ g ; then:

• dom h = {x : dom f ∩ dom g f (x) = g (x)}

T

• h (x) = f (x) = g (x) for x ∈ dom h

hat is to say: h is the function that yields the common value of f and g wherever the

2

two functions ‘‘agree’’ (yield the same value).

.7.2 Overriding union

After intersection, it is natural to turn our attention to the union of functions. Here,

d
however, we must be a bit more careful: although the union of two functions is always
efined as a set (since the functions themselves are sets, of which we can take the union),

that set is not necessarily a function.

The problem arises wherever the two functions are both defined but disagree.

,For example, f and f as defined above have conflicting values for the argument c1 2

1 2so that f ∪ f is not a function. (The values for b do not cause a problem since the two
functions coincide on that element.)

In the general case, f ∪ g is a relation, but not always a function.

s
t

We could define a ∪ operation on functions by restricting it to pairs of function
hat agree on any common argument value, but that operation would not be very useful.

a
Instead, we may define a union operation that is applicable to any pair of functions, and
lways yields a function, by making it non-commutative ; in other words, it will not treat

its operands symmetrically.

That non-commutative operation is the overriding union, for which Metanot uses
sthe symbol ∪ . The convention in the functional expression f ∪ g is that g override\ \

\
m
f wherever they disagree. As a reminder of this convention, the bar in the symbol ∪

akes the union ‘‘lean’’ towards the second operand.

gThe operator " ∪ " is defined more precisely as follows for f , g in X Y . Callin→\

h ∆
\= f ∪ g

then:

dom h = dom f ∪ dom g ;

;

h

h (x) = f (x) if x ∈ dom f and x ∈/ dom g

(x) = g (x) if x ∈ dom g .

OPERATIONS ON FUNCTIONS 3§2.7.2 3

Figure 2.5: Overriding union

s
s
As an illustration of overriding union, consider again our two example functions. A
hown on the figure above:

f ∪ f = {<a, 1>, <b, 2>, <c, 4>, <d, 4>, <e, 4>}1 2\

n

A

2.7.3 Restrictio

nother important operator on functions is restriction. The restriction of a function f to a

r
subset A of its source set, written f \ A , is the same function as f , but with its domain
estricted to A .

Taking one of the earlier functions as an example again:

f \ {a, b, e} = {<a, 1>, <b, 2>}1

The precise definition of restriction is as follows:

meyer
Stamp

3 MATHEMATICAL BACKGROUND4 §2.7.3

→ .

L

Let f : X Y

et A : P (X) (in other words, A is a subset of X).

nThen h = f \ A , the restriction of f to A, is the functio∆

→h : A Y

such that

dom h = A ∩ dom f

h

R

and h (a) = f (a) for a ∈ dom

emembering that functions, being relations, are sets of pairs, we may also define
f \ A more concisely as

f ∩ (A × Y)

Using this technique we could define restriction for arbitrary relations, not just functions.

2

But in this book we only need it for functions.

.7.4 Composition

Composition is another operation defined for relations but used only for functions in this
book. The following figure illustrates function composition:

Figure 2.6: Function composition

meyer
Stamp

SOPERATIONS ON FUNCTION 5§2.7.4 3

For any two functions f and g of signatures

f: X Y→
→g: Y Z

their composition, written f ; g (a notation borrowed from VDM), is the function

h: X Z→
such that

dom h = {x : dom f f (x) ∈ dom g }

and, wherever h is defined, then

h (x) = g (f (x))

Rather than f ; g , the more common notation for composition is g f . The semicolon
d

i
suggests (in accordance with its use in ordinary written language) that f and g are applie
n the order in which they are listed.

This use of the semicolon may be seen as an homage to the concrete syntax of the
e

m
Algol family of languages: as will be seen in the next chapters, composition is th

athematical equivalent of statement sequencing. No confusion will result since

a
programs extracts, when embodied in a Metanot description, are always written with
bstract, not concrete syntax.

s

O

2.7.5 Infix operators as function

ne more convention will be useful for handling functions. In common mathematical (and
a

s
programming) practice, many binary functions — functions of two arguments — use
o-called infix notation, with an operator between the two arguments rather than in front,

as in a + b rather than plus (a , b). Examples of such infix operators are +, –, , /, or*
the just introduced composition operator ";".

It is often convenient to be able to talk about the functions associated with these
e

f
operators without having to introduce special names and definitions (as in ‘‘let plus be th
unction such that, for any a and b , plus (a , b) = a + b ’’).∆

g
l

The Metanot convention is borrowed from the Eiffel and Ada programmin
anguages. If § is an infix binary operator, you may refer to the associated function

through the notation

infix "§"

which you may also abbreviate to just "§" in expressions involving the function.

a
Applications of the function to actual arguments a and b will use the usual infix notation:

§ b .

MATHEMATICAL BACKGROUND36 §2.7.5

For example, the function

infix "+" : N × N N

i

→
s the addition on natural numbers, and for any sets X , Y , Z :

infix ";" : ((X Y) × (Y Z)) (X Z)→ → → →
is function composition over X , Y , Z . As the definition indicates, infix ";" is a function of

r
two arguments, one a function from X to Y and the other a function from Y to Z ; its
esult is a function from X to Z .

Defined in this way, function composition is a typical example of a functional, or

f
function that admits other functions as arguments or results. Functionals are discussed
urther below.

2.7.6 Predicates and the quotient operator

A predicate on a set X is a total function

pred : X → B

from X to the set B of boolean values (true and false).

a
s

There is a natural connection between predicates on X and subsets of X . If A is
ubset of X , then we may associate with A the predicate

characteristic : X B
A

→

such that

characteristic (x) = true if x ∈ A , and

c
A

A

haracteristic (x) = false if x ∈/ A .

Function characteristic is called the characteristic function of the subset A ; it’s the
p

A
redicate that yields true for arguments within A , and false outside. The following figure

illustrates it.

Conversely, if pred is a predicate on X , we may define the quotient of X by pred ,
written X / pred , as the subset of X containing only the objects that satisfy pred :

X / pred = {x : X pred (x)}

F

∆

or example, if X is a set of persons and female (x) is true if and only if x is a female,
then X / female is the set of female members of X .

OPERATIONS ON FUNCTIONS 7§2.7.6 3

Figure 2.8: Characteristic function

e
s

The notions of characteristic function and predicate are inverse of each other, in th
ense that for any subset A of X (that is, A : P (X)):

X / characteristic = A
A

→ :and for any predicate pred on X (that is, pred : X B)

characteristic = pred
X / pred

e

T

2.7.7 Inverse and imag

he inverse and image operators, introduced earlier (page 25) for relations, apply to the
,special case of functions. If f is a function of signature X Y and A is a subset of X→

then:

• f (A) is a subset of Y .

•
• •

f is a relation (a member of Y ←→ X). It is not necessarily a function.

E

–1

xercise 2.6 covers several properties of images of subsets through functions.

A

2.8 FUNCTIONALS

functional, also called a higher-order function, is a function that admits functions
l

i
among its arguments, results, or both. The previous section already introduced severa
mportant examples, such as the composition operator, a function that takes two functions

f and g and yields as a result another function, their composition f ; g .

meyer
Stamp

MATHEMATICAL BACKGROUND38 §2.8

r
f

The word ‘‘functional’’ as used in this book will only apply to total higher-orde
unctions. 3

It is important to familiarize yourself with the use of functionals, which play a major

2

role in denotational semantics. Exercises 2.1 to 2.4 will help you master them.

.8.1 Dispatching and parallel application

The discussion of recursion in chapter 8 uses two typical functionals, ‘‘dispatching’’ and
y

s
‘‘parallel application’’. They are generic, meaning that you can apply them to arbitrar
ets U , V , X and Y (dispatching doesn’t need V). We will express both of them through

infix operators: infix "&" for dispatching and infix "#" for parallel application.

Figure 2.9: Dispatching

eDispatching, illustrated by the figure above, is the functional of signatur

infix "&": ((U X) × (U Y)) (U (X × Y))→ → → →
such that for any functions

f: U X→
→g: U Y

Do not confuse ‘‘a functional’’, used here as a noun, with the adjective ‘‘functional’’ as used to
c

3

haracterize a relation (page 27).

meyer
Stamp

§2.8.1 39

f & g is the function

FUNCTIONALS

h: U X × Y

d

→
om h = dom f ∩ dom g

h (u) = < f (u), g (u)>∆

As shown on the preceding figure, f & g ‘‘dispatches’’ an argument u to X through f
and at the same time to Y through g .

Figure 2.10: Parallel application

eParallel application, illustrated by the figure above, is the functional of signatur

infix "#": ((U V) × (X Y)) ((U × V) (X × Y))→ → → →
such that for any functions

f: U X→
→g: V Y

nf # g is the functio

meyer
Stamp

MATHEMATICAL BACKGROUND40 §2.8.1

→h: U × V X × Y

g

h

dom h = dom f × dom

(u, v) = < f (u), g (v)>

A

∆

s shown on the figure, f # g applies f and g ‘‘in parallel’’ to an argument from U and
an argument from V , yielding a pair in X × Y.

Dispatching and parallel applications allow us to apply two functions together, either

2

to the same argument or to two separate ones.

.8.2 Currying

Another important functional is curry (named after the mathematician H.B. Curry, one of
t

f
the major contributors to combinatory logic). This functional transforms any two-argumen
unction into a one-argument function. For a number of discussions, it is convenient to

-
a
consider that all functions take exactly one argument. So what if we are given a two
rgument function? The trick is to consider it as a one-argument function, whose result is

itself a function of one argument.

This will extend to more than two arguments: we may view a three-argument function as a

a

one-argument function returning a one argument function, itself taking a one-argument function

s argument.

Here’s how the transformation from two-argument to one-argument functions works.

a
Considering total functions only, we define curry as follows. For any sets X , Y , Z , if f is

total function of signature

f: X × Y Z→
then curry (f) is a total function g of signature

g: X (Y Z)→ →
Ysuch that for any x : X and y :

g (x) (y) = f (x, y)

If this is the first time you see currying you may find this a bit strange, but it’s really very
e

t
simple. curry (f), called g above, really represents the same function as f — in the sens
hat it eventually yields the same value — but initially restricts its attention to only one

,
t
argument. So whereas the result of applying f to two arguments x and y is a value z : Z
he result of applying g to one argument x is still a (total) function from Y to Z , whose

result, for any y , is precisely f (x , y), that is to say z .

Currying achieves partial evaluation of a function: in our example g (x) is like f
e

a
evaluated on one argument, x , and hence (since f takes two arguments) still needing on
rgument to yield a final value. That’s why g , its curried version, is still a function.

SFUNCTIONAL 1§2.8.2 4

The operator curry is itself a total function — what we have called a functional since
it manipulates functions. Its signature is

curry : ((X × Y) Z) (X (Y Z))

E

→ → → →
xercise 2.4 explores properties of the curry functional and its generalization to

e
2
arguments that are not necessarily total. You are particularly encouraged to do exercis
.5, which applies currying to programming language processing tools such as compilers

2

and interpreters.

.9 STRUCTURAL INDUCTION

The last mathematical technique at which we need to take a look serves to define sets of
,

i
complex objects and to prove properties of such objects. Known as structural induction
t is particularly useful for defining the concrete structure of languages.

T

2.9.1 An example: S-expressions in Lisp

he S-expressions of Lisp (serving as the basis for data and program structures in that
language) provide a typical example of objects obtained by structural induction.

Here is a possible definition of S-expressions. It assumes a separately specified
s

o
notion of atom; to keep the discussion simple, atoms will be identifiers built as sequence

f letters and digits, beginning with a letter. (Actual Lisp atoms also include more
l

i
possibilities, such as numbers.) We may then define an S-expression by structura
nduction as being one of the following:

• An atom.

• Of the form (s s), where s and s are S-expressions.1 2 1 2•

The intuitive meaning of such a definition is clear: S-expressions cover atoms such as
atom1, and more complex expressions written with parentheses and a dot, such as

(atom1 atom2)•

• • • • • • • •)

2

((atom1 atom2) ((atom3 (atom4 atom5) atom6) (atom7 atom8) atom9)

.9.2 General form of definitions by structural induction

e
o
More generally, a definition by structural induction defines a certain set S as being mad

f members that are either:

A • Members of one or more predefined sets (such as the set of atoms above), which

B

we will call the base sets.

• Deduced from previous elements of S through one or more well defined
mechanisms (such as the above form with parentheses and a dot).

MATHEMATICAL BACKGROUND42 §2.9.2

s
t
Such a definition has a clear mathematical interpretation: it means defining the set S a
he union of an infinite family of sets

S = S∆
i : N

i∪

i
where we may define the S by induction of the ordinary, familiar kind, using integers:

• S is the union of the base sets (the set of all objects obtainable under A).

•
0

Each S is the set of all objects obtainable from one or more members of S , for
o

i +1 j
ne or more j ∈ 1 . . i , through the mechanisms introduced under B.

mIn the S-expression example, S is the set of atoms; S is the set of objects of the for0 1
• 2 • a

a
(a b), where a and b are atoms; S is the set of objects of the form (a b), where
nd b are either atoms or in S ; and so on.1

i
Some objects may be in S for more than one i (actually, in the S-expression

eexample, every S is a subset of S for positive i); this is fine since S is defined as th
i i +1

i i
.union of all S , so that it does not matter that a member of S may belong to several S

Viewed in this way, structural induction is a straightforward application of the usual
induction on integers, applied here to define inductively the sequence of sets S .

i

S

2.9.3 Proofs by structural induction

ets defined by structural induction lend themselves to proofs organized along the same
,

y
line. To prove by structural induction that all members of S satisfy a certain property p
ou may successively prove that:

A • All members of the base sets satisfy p . (Base step.)

B • If a set of objects in various S satisfy p , any object built from them by any of
j

i +1)

T

the construction mechanisms that define S also satisfies p . (Induction step.

he validity of this technique follows immediately from the validity of proofs by ordinary
r

i
integer induction: a proof by structural induction simply amounts to proving by intege
nduction the property

p (i : N) = ‘‘All elements of S satisfy p ’’

A

∆
i

s an example, let us prove by structural induction that every S-expression has an equal

A

number of opening and closing parentheses. The proof contains two parts:

• An atom has no parentheses, and so satisfies the property.

B • Consider two S-expressions e and e , each satisfying the property. Let p and p 2
b

1 2 1
e their respective numbers of opening parentheses; by assumption, these are also

s
o
their numbers of closing parentheses. The construction mechanism given yield
nly one new S-expression from e and e :1 2

STRUCTURAL INDUCTION 3§2.9.3 4

• 2n ∆
1= (e e)

Counting parentheses in n , we find p + p + 1 left parentheses, and the same1 2

D

number of right parentheses.

efinitions by structural induction are a simple case of recursive definitions, whose
t

i
significance and mathematical properties will be explored in a much more general contex
n chapter 8. Structural induction proofs will also find a generalization there through the

i
notion of stable predicate. Justifying structural induction within the more general theory
s the subject of exercise 8.4.

S

M

2.10 BIBLIOGRAPHICAL NOTE

any of the notations introduced in this chapter have their equivalents in the work on the

e
VDM denotational specification method [Bjo/rner 1982] [Jones 1986]. Some come from an
arly version of Z [Abrial 1980].

The article by John Backus on functional programming [Backus 1978] describes

e
high-level functional operators not unlike some of those used in this chapter and in the
xercises below. However Backus’ language, FP, includes only a fixed set of higher-level

s
functional operators; new ones may not be defined in the language proper, but in a
upporting notation called FFP. Languages that do permit definition of functions of an

E

arbitrary level are Miranda [Turner 1985] and Haskell [Haskell Web].

XERCISES

You may use lambda notation (chapter 5) to simplify some of the answers, but it is not

E

indispensable.

xercises 2.1 to 2.4 use R, the set of real numbers, and some also need the set R of

2

non-zero real numbers.

•

.1 Properties of simple functions

:Consider the following functions on real numbers

square, the square function

)inverse, the inverse function (inverse (x) = 1/x∆

" *+", "–", " ", "/" (addition, subtraction, multiplication, division)

a

Id (the identity function)

dd1, such that add1 (x) = x+1 for all x in R.∆

D4 MATHEMATICAL BACKGROUN4

1 What are the signatures of these functions?

3
2 What function is inverse ; inverse?

What function is "+" ; square?

F

2.2 Dispatching

or arbitrary sets U, X, Y, the ‘‘dispatching’’ functional infix "&" was introduced in 2.8.1.

eTake U, X and Y to be all R . Prove the following (referring to the functions of th•

previous exercise):

1 (square & Id) ; "/" = Id \ R •

* d

3

2 (square & inverse) ; " " = I

add1 ; square = (square & ((Id & Id) ; "+")) ; "+" ; add1

F

2.3 Parallel application

or arbitrary sets U, V, X, Y, the ‘‘parallel application’’ functional infix "#" was

U
introduced in 2.8.1. Let proj1 and proj2, be defined as the two projections from

× V:

proj1 (<u, v>) = u
∆

∆

v

1

proj2 (<u, v>) =

What are the signatures of functions proj1 and proj2?

:2 Take U, V, X and Y to be all R . Prove the following•

* "

2

2.1 "/" = (Id # inverse) ; "

.2 " " ; square = (square # square) ; " "

2
* *

.3 "/" ; square = (square # square) ; "/"

"2.4 "+" ; square = (((square # square) ; "+") & (" " ; (Id & Id) ; "+")) ; "+*

y
w
3 Express the following properties in the style of the equalities 2.1 to 2.4, that is to sa

ithout any reference to members of R, using only the functions and functionals defined
so far.

45

3 *
2 2

EXERCISES

.1 (a – b) (a + b) = a – b for all a, b in R

3.2 b (a /b) = a for all a in R, b in R*
•

2
*3 *.3 a (a + b) = a + a b

3.4 f is commutative
(where f is a total function of signature R × R R).

A

2.4 Iterate, apply and curry

→

ll the functions considered in this exercise are total except in question 5.

Let A, X, Y, Z be arbitrary sets. For any function

f: A A

a

→
nd any non-negative integer n, define iterate (f, n) to be the n-th iterate of f, in other

words the function h such that

h = f ; f ; f . . . ; f (n times)

Also, define apply to be the function such that, for any member a of A,

apply (f, a) = f (a).∆

In other words, apply takes two arguments, the first of which is a function. Its result is the

F

application of its first argument to its second.

inally, curry is the function defined on page 40, which takes any two-argument function
o

s
as argument and yields a one-argument function as result. Its signature (if it is applied t
ets X, Y and Z) is

((X × Y) Z) (X (Y Z))

1

→ → → →
What are the signatures of iterate and apply?

t
c
2 Show that if the set A is given, it is possible to choose sets X, Y, Z so tha
urry (apply) is a valid expression, denoting a function. What then is the signature of this

3

function? What is the function itself?

Show that if the set A is given, it is possible to choose sets X, Y, Z so that

t
curry (iterate) is a valid expression, denoting a function. What then is the signature of
his function? Explain informally what this function ‘‘does’’.

Z
s
4 For each of the following functional expressions, give set assignments for A, X, Y,
uch that the expression has a value. Then give that value (or, in the case the value is a

r
‘
function, explain what that function is, for example ‘‘the square root function on R’’, o
‘the function f : N N such that, for any n : N, f (n) = n + 2)’’.→

D4 MATHEMATICAL BACKGROUN6

4.1 curry ("/") (1)

4

4.2 curry ("+")

.3 curry (iterate) (add1) (1)

e

5

4.4 (curry ("+") # Id) ; iterat

As defined on page 40, the functional curry applies to arguments that are total
l

f
functions. Extend the definition so that its arguments and result are possibly partia
unctions. (Hint: the new definition must specify precisely the domain of the functional’s

2

result, and of its result’s result, as was done for "#" and "&" in 2.8.1.)

.5 Compilers and interpreters

Let M be a simple computer whose machine programs are assumed to compute functions
of signature

I O

w

→
here I is the set of possible inputs and O the set of possible outputs. Machine programs

L

for M may thus be viewed as implementations of functions from I to O.

et L be a high-level language; let COMP be a compiler for L, generating M machine

L

code and INT be an interpreter for L running on M.

et fcomp and fint be the functions performed by COMP and INT, respectively.

2

1 What are the signatures of fcomp and fint?

Express a mathematical relationship between fcomp and fint? (Hint: look at curry.)

L

2.6 Properties of images

et X , Y and Z be arbitrary sets, r and s relations in X ←→ Y , t a relation in Y ←→ Z , f
and g functions in X Y with disjoint domains, A and A ’ subsets of X , B and B ’→

• • d
p
subsets of Y . Prove the following properties of the image operation r (A) introduce
age 25:

1 r (A ∪ A ’) = r (A) ∪ r (A ’)• • • • • •

• • • • • •2
−1 −1 −1

f (B ∩ B ’) = f (B) ∩ f (B ’)

3 (s ; t) (A) = t (s (A))• • • • • •

•4 • • • • •(r ∪ s) (A) = r (A) ∪ s (A)

)5 (r ∩ s) (A) ⊆ r (A) ∩ s (A• • • • • •

•• • •)6 (A ⊆ A ’) ==> (r (A) ⊆ r (A ’)

47

7 • • • •

EXERCISES

(f \ A ’) (A) = f (A ∩ A ’)

)8 (f ∪ g) (A) = f (A) ∪ g (A\ • • • • • •

•
−

• • • • •
1 −1 −1

9 \(f ∪ g) (B) = f (B) ∪ g (B)

10 (f \ A) (B) = f (B) ∩ A
−1 −1

•

(

• • •

Hint: to prove that two functions are equal, you must prove that they have the same
l

r
domains and yield the same value for any member of that domain. Note that not al
elations appearing above are functions.)

11 Dropping the hypothesis that f and g have disjoint domains, update properties 8 and

2

9 accordingly.

.7 Expressing properties of relations and functions

d
f
The aim of this exercise is to learn to characterize various properties of relations an
unctions by higher-level functional predicates.

e
m
The generic identity function Id , written Id [X] if the set X to which it applies must b

ade explicit, is such that Id (x) = x for any x : X .

.1 Prove that a relation r ∈ X ←→ Y is functional if and only if r ; r ⊆ Id [Y]–1

e
t
The next question uses the notion of total relation. A relation r ∈ X ←→ Y is said to b
otal if and only if

x : X y : Y <x, y > ∈ rV • ––
–

•-

In other words, r is total if and only if it associates at least one member of the target set

w
with every member of the source set. (This is compatible with the definition of ‘‘total’’

hen applied to functions.)

2 Prove that a relation r : X ←→ Y is total if and only if Id [X] ⊆ r ; r .–1

d
f
The next questions require that you express formally various properties of relations an
unctions in the same style as in questions 1 and 2, that is to say using relational

t
operators such as composition (";") and inverse, with no explicit references to members of
he source or target sets (such as x and y above).

t3 Express that r is a surjective (or ‘‘onto’’) relation, that is to say such tha

y : Y x : X <x, y > ∈ rV • ––
–

•-

4 Express that r is an injective relation, that is to say such that

)x , x : X , y : Y (<x , y > ∈ r <x , y > ∈ r) ==> (x = x1 2 • 1 2 1 2

5

V- /\

Express that r is a one-to-one function (injective, surjective, total).

6 A relation r ∈ X ←→ X is said to be

MATHEMATICAL BACKGROUND48

• Reflexive iff x : X <x, x > ∈ rV- •

• Irreflexive iff x : X <x, x > ∈/ rV- •

• Symmetric iff x , y : X (<x, y > ∈ r) ==> (<y , x > ∈ r)V- •

• Asymmetric iff x , y : X (<x, y > ∈ r) ==> (<y , x > ∈/ r)V- •

• Antisymmetric iff x , y : X (<x, y > ∈ r <y , x > ∈ r) ==> (x = y)V •- /\

• Transitive iff x , y , z : X (<x, y > ∈ r <y , z > ∈ r) ==> (<x, z > ∈ r)V •- /\

Express each of these properties in the above style.

